• Title/Summary/Keyword: 자동수집

Search Result 1,087, Processing Time 0.027 seconds

A Study on the 3-month Prior Prediction of Chl-a Concentraion in the Daechong Lake using Hydrometeorological Forecasting Data (수문기상예측자료를 활용한 대청호 Chl-a 3개월 선행예측연구)

  • Kwak, Jaewon
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.144-153
    • /
    • 2021
  • In recently, the green algae bloom is one of the most severe challenges. The seven days prior prediction is in operation to issues the water quality warning, but it also needs a longer time of prediction to take preemptive measures. The objective of the study is to establish a method to conduct a 3-month prior prediction of Chl-a concentration in the Daechong Lake and tested its applicability as a supplementary of current water quality warning. The historical record of water quality in the Daechong Lake and seasonal forecasting of ECMWF were obtained, and its time-series characteristics were analyzed. The Chl-a forecasting model was established using a correlation between Chl-a concentration and meteorological factor and NARX model, and its efficiency was compared.

Implementation of Automatic Identification Monitoring System for Fishing Gears based on Wireless Communication Network and Establishment of Test Environment (무선통신망 기반 어구자동식별 모니터링 시스템 구현 및 시험환경 구축)

  • Joung, JooMyeong;Park, HyeJung;Kim, MinSeok;Kwak, Myoung-Shin;Seon, Hwi-Joon
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.193-200
    • /
    • 2021
  • In order to prevent illegal fishing and reduce lost fishing gear, it is necessary to develop a constant and continuous fishing gear monitoring system in the marine environment. In this paper, we design a long-term operational, reliable system model with communication coverage of more than 25Km considering the reality of gradually expanding fishing activity due to the depletion of fishery resources and marine environments. The design results are implemented to verify the operability of the system by separating the communication success rate of SKT and private LoRa networks and verifying the control function of each control system through the collected location information, respectively.

Mask Wearing Detection System using Deep Learning (딥러닝을 이용한 마스크 착용 여부 검사 시스템)

  • Nam, Chung-hyeon;Nam, Eun-jeong;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.44-49
    • /
    • 2021
  • Recently, due to COVID-19, studies have been popularly worked to apply neural network to mask wearing automatic detection system. For applying neural networks, the 1-stage detection or 2-stage detection methods are used, and if data are not sufficiently collected, the pretrained neural network models are studied by applying fine-tuning techniques. In this paper, the system is consisted of 2-stage detection method that contain MTCNN model for face recognition and ResNet model for mask detection. The mask detector was experimented by applying five ResNet models to improve accuracy and fps in various environments. Training data used 17,217 images that collected using web crawler, and for inference, we used 1,913 images and two one-minute videos respectively. The experiment showed a high accuracy of 96.39% for images and 92.98% for video, and the speed of inference for video was 10.78fps.

Information Structuring of Diagram Repository for UML Diagrams (UML 다이어그램을 위한 다이어그램 레포지토리의 정보구조화)

  • Kim, Yun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1588-1595
    • /
    • 2019
  • This paper presents the technique on structuring information of the diagram repository for UML diagrams. Because object interactions are the body of object-oriented programming, this paper handles especially the sequence diagrams and class diagrams among UML diagrams. Based on class diagrams, sequence diagrams represent the procedure of object interactions in run-time and then the corresponding codes are generated from the contents of those sequence diagrams. To do this work, this paper presents a method to construct the information repository for generating code from the contents of sequence diagrams. This paper classifies the five message types of sequence diagrams and then extracts the needed information including items and values on the corresponding message types for constructing message repositories. Because sequence diagram is composed of messages included, the final repository is constructed by collecting each of structured repositories on messages sequentially.

Spatiotemporal Analysis of Vessel Trajectory Data using Network Analysis (네트워크 분석 기법을 이용한 항적 데이터의 시공간적 특징 분석)

  • Oh, Jaeyong;Kim, Hye-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.759-766
    • /
    • 2020
  • In recent years, the maritime traffic environment has been changing in various ways, and the traffic volume has been increasing constantly. Accordingly, the requirements for maritime traffic analysis have become diversified. To this end, traffic characteristics must first be analyzed using vessel trajectory data. However, as the conventional method is mostly manual, it requires a considerable amount of time and effort, and errors may occur during data processing. In addition, ensuring the reliability of the analysis results is difficult, because this method considers the subjective opinion of analysts. Therefore, in this paper, we propose an automated method of traffic network generation for maritime traffic analysis. In the experiment, spatiotemporal features are analyzed using data collected at Mokpo Harbor over six months. The proposed method can automatically generate a traffic network reflecting the traffic characteristics of the experimental area. In addition, it can be applied to a large amount of trajectory data. Finally, as the spatiotemporal characteristics can be analyzed using the traffic network, the proposed method is expected to be used in various maritime traffic analyses.

Research on Safety Design of Residence Based on CPTED Strategy -focused on Gamcheon cultural village in Busan, Korea as an example- (CPTED 전략에 근거한 주거지역의 안전디자인에 관한 연구 -한국 부산 감천문화마을 사례를 중심으로-)

  • Zhang, Ning;Cho, Joung-Hyung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.93-104
    • /
    • 2021
  • In the process of the sustainable development of the world economy, the change and construction of urban living environment has always been the focus of people's attention. Therefore, the purpose of this study is to find out the potential safety hazards in residential areas, and put forward feasible improvement plans under the framework of CPTED theory.One is to collect the necessary literature. Secondly, according to the field investigation and questionnaire survey, sorting out the existing security risks. Finally, this paper puts forward the corresponding improvement and suggestion to this research. The conclusion is as follows: First, based on the six principles of CPTED theory, problems existing in Gamcheon Cultural Village, which is subject to research, were investigated. Second, six of the most serious safety issues (safety handle, landscaping, entrance control, signs, empty space, monitoring) were objectively analyzed, and designs were presented in terms of increasing safety stairs, installing automatic entrances, open access view, unifying signs, and building leisure areas.

Adjusting Weights of Single-word and Multi-word Terms for Keyphrase Extraction from Article Text

  • Kang, In-Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.47-54
    • /
    • 2021
  • Given a document, keyphrase extraction is to automatically extract words or phrases which topically represent the content of the document. In unsupervised keyphrase extraction approaches, candidate words or phrases are first extracted from the input document, and scores are calculated for keyphrase candidates, and final keyphrases are selected based on the scores. Regarding the computation of the scores of candidates in unsupervised keyphrase extraction, this study proposes a method of adjusting the scores of keyphrase candidates according to the types of keyphrase candidates: word-type or phrase-type. For this, type-token ratios of word-type and phrase-type candidates as well as information content of high-frequency word-type and phrase-type candidates are collected from the input document, and those values are employed in adjusting the scores of keyphrase candidates. In experiments using four keyphrase extraction evaluation datasets which were constructed for full-text articles in English, the proposed method performed better than a baseline method and comparison methods in three datasets.

Sleep Monitoring by Contactless in daily life based on Mobile Sensing (모바일 센싱 기반의 일상생활에서 비접촉에 의한 수면 모니터링)

  • Seo, Jung-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.491-498
    • /
    • 2022
  • In our daily life, quality of sleeping is closely related to happiness index. Whether or not people perceive sleep disturbance as a chronic disease, people complain of many difficulties, and in their daily life, they often experience difficulty breathing during sleep. It is very important to automatically recognize breathing-related disorders during a sleep, but it is very difficult in reality. To solve this problem, this paper proposes a mobile-based non-contact sleeping monitoring for health management at home. Respiratory signals during the sleep are collected by using the sound sensor of the smartphone, the characteristics of the signals are extracted, and the frequency, amplitude, respiration rate, and pattern of respiration are analyzed. Although mobile health does not solve all problems, it aims at early detection and continuous management of individual health conditions, and shows the possibility of monitoring physiological data such as respiration during the sleep without additional sensors with a smartphone in the bedroom of an ordinary home.

A Comparative Study on Game-Score Prediction Models Using Compuational Thinking Education Game Data (컴퓨팅 사고 교육 게임 데이터를 사용한 게임 점수 예측 모델 성능 비교 연구)

  • Yang, Yeongwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.529-534
    • /
    • 2021
  • Computing thinking is regarded as one of the important skills required in the 21st century, and many countries have introduced and implemented computing thinking training courses. Among computational thinking education methods, educational game-based methods increase student participation and motivation, and increase access to computational thinking. Autothinking is an educational game developed for the purpose of providing computational thinking education to learners. It is an adaptive system that dynamically provides feedback to learners and automatically adjusts the difficulty according to the learner's computational thinking ability. However, because the game was designed based on rules, it cannot intelligently consider the computational thinking of learners or give feedback. In this study, game data collected through Autothikning is introduced, and game score prediction that reflects computational thinking is performed in order to increase the adaptability of the game by using it. To solve this problem, a comparative study was conducted on linear regression, decision tree, random forest, and support vector machine algorithms, which are most commonly used in regression problems. As a result of the study, the linear regression method showed the best performance in predicting game scores.

A Named Entity Recognition Model in Criminal Investigation Domain using Pretrained Language Model (사전학습 언어모델을 활용한 범죄수사 도메인 개체명 인식)

  • Kim, Hee-Dou;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.13-20
    • /
    • 2022
  • This study is to develop a named entity recognition model specialized in criminal investigation domains using deep learning techniques. Through this study, we propose a system that can contribute to analysis of crime for prevention and investigation using data analysis techniques in the future by automatically extracting and categorizing crime-related information from text-based data such as criminal judgments and investigation documents. For this study, the criminal investigation domain text was collected and the required entity name was newly defined from the perspective of criminal analysis. In addition, the proposed model applying KoELECTRA, a pre-trained language model that has recently shown high performance in natural language processing, shows performance of micro average(referred to as micro avg) F1-score 98% and macro average(referred to as macro avg) F1-score 95% in 9 main categories of crime domain NER experiment data, and micro avg F1-score 98% and macro avg F1-score 62% in 56 sub categories. The proposed model is analyzed from the perspective of future improvement and utilization.