Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.12
/
pp.1809-1816
/
2021
In order to identify the latest research trends using data related to national R&D projects and to produce and utilize meaningful information, the application of automatic classification technology was also required in the national R&D information service, so we conducted research to automatically classify and recommend research field. About 450,000 cases of national R&D project data from 2013 to 2020 were collected and used for learning and evaluation. A model was selected after data pre-processing, analysis, and performance analysis for valid data among collected data. The performance of Word2vec, GloVe, and fastText was compared for the purpose of deriving the optimal model combination. As a result of the experiment, the accuracy of only the subcategories used as essential items of task information is 90.11%. This model is expected to be applicable to the automatic classification study of other classification systems with a hierarchical structure similar to that of the national science and technology standard classification research field.
Many embedded systems are supporting Java as their software platform via Java virtual machine. Java virtual machine manages memory automatically by providing automatic memory management, i.e. garbage collector. Because only scarce memory is available to embedded system, Java virtual machine should use small memory and manage it efficiently. This paper introduces two memory management techniques to exploit small memory in Java virtual machine which can execute multiple Java applications concurrently. First, compaction based garbage collection is introduced to overcome external fragmentation problem in presence of immovable memory area. Then garbage collector driven class unloading is introduced to reduce memory use of unnecessary loaded classes. We implemented these techniques in working embedded system and observed that they are very efficient, since more Java applications are able to be executed concurrently and memory use is also reduced with these techniques.
Young-Geun Kim;Seung-Hyeon Kim;Jung-Kon Kim;Won-Jung Kim
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.1
/
pp.189-196
/
2024
Frequent false positives alarm from the Intelligent Selective Control System have raised significant concerns. These persistent issues have led to declines in operational efficiency and market credibility among agents. Developing a new model or replacing the existing one to mitigate false positives alarm entails substantial opportunity costs; hence, improving the quality of the training dataset is pragmatic. However, smaller organizations face challenges with inadequate capabilities in dataset collection and refinement. This paper proposes an automatic human pose data collection system centered around a human pose estimation model, utilizing camera-based sensor fusion techniques and edge devices. The system facilitates the direct collection and real-time processing of field data at the network periphery, distributing the computational load that typically centralizes. Additionally, by directly labeling field data, it aids in constructing new training datasets.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.11
no.1
/
pp.93-102
/
2011
In this paper we describe an efficient and easy to use network monitoring system which can identify network configuration automatically by means of capturing and analyzing the ARP broadcasting packets. After identifying network nodes, it gathers detail information of each node such as NETBIOS name and number of hop counts using ICMP and then shows subnet configuration with graphical method. This monitoring system also has a subset of intrusion detection system that can monitor any port scanning trial. With this automatic network configuration functions, it helps to lessen address keeping track overhead which is crucial for network monitoring so that it provides efficient network management.
Annual Conference on Human and Language Technology
/
2002.10e
/
pp.85-91
/
2002
최근 정보 추출, 질의응답 시스템 등의 고정밀 자연어처리 어플리케이션이 부각됨에 따라 개체명 인식의 중요성이 더욱 커지고 있다. 이러한 개체명 인식을 위한 학습에는 대용량의 어휘자료를 필요로 하기 때문에 충분한 학습 데이터, 즉 개체명 태그가 부착된 충분한 코퍼스가 제공되지 못하는 경우 자료희귀문제(data sparseness problem)로 인하여 목적한 효과를 내지 못하는 경우가 않다. 그러나 태그가 부착된 코퍼스를 생성하는 일은 시간과 인력이 많이 드는 힘든 작업이다. 최근 인터넷의 발전으로 웹 데이터는 그 양이 매우 많으며, 습득 또한 웹 검색 엔진을 사용해서 자동으로 모음으로써 다량의 말뭉치를 모으는 것이 매우 용이하다. 따라서 최근에는 웹을 무한한 언어자원으로 보고 웹에서 필요한 언어자원을 자동으로 뽑는 연구가 활발히 진행되고 있다. 본 연구는 이러한 연구의 첫 시도로 웹으로부터 다량의 원시(raw) 코퍼스를 얻어 개체명 태깅 학습을 위한 태그 부착 코퍼스를 자동으로 생성하고 이렇게 생성된 말뭉치를 개체면 태깅 학습에 적용하는 비교 실험을 통해 수집된 말뭉치의 유효성을 검증하고자 한다. 향후에는 자동으로 웹으로부터 개체 명 태깅 규칙과 패턴을 뽑아내어 실제 개체명 태거를 빨리 개발하여 유용하게 사용할 수 있다.
Annual Conference on Human and Language Technology
/
2010.10a
/
pp.136-140
/
2010
본 논문은 지식경제부의 지원 하에 한국전자통신연구원 언어처리연구팀에서 2010년에 개발하고 있는 패턴기반 영한 메신저 대화체 문장 번역 시스템에 관한 것이다. 본 논문의 목표는 문어체 문장 위주의 패턴기반 영한 웹문서 자동번역 시스템을 대화체 문장 위주의 패턴기반 영한 메신저 자동번역 시스템으로 전환하고자 할 때, 특화하는 방법 및 모듈에 관해 기술하는 것이다. 영어권 Native speaker로부터 수집한 메신저 대화체 문장을 대상으로 번역률을 평가한 결과, 문어체 위주의 영한 웹 자동번역 시스템은 71.83%인 반면, 대화체 위주의 영한 메신저 자동번역 시스템은 76.88%였다. 대화체 문장을 대상으로 번역률을 5.05% 향상시킬 수 있었던 이유는 본 논문에서 제시한 특화 방법을 따른 결과라고 할 수 있다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.389-393
/
2018
딥러닝의 발달로 기계번역, 대화 시스템 등의 자연언어처리 분야가 크게 발전하였다. 딥러닝 모델의 성능을 향상시키기 위해서는 많은 데이터가 필요하다. 그러나 많은 데이터를 수집하기 위해서는 많은 시간과 노력이 소요된다. 본 연구에서는 이미지 생성 모델로 좋은 성능을 보이고 있는 생성적 적대 네트워크(Generative adverasarial network)를 문장 생성에 적용해본다. 본 연구에서는 긍/부정 조건에 따른 문장을 자동 생성하기 위해 SeqGAN 모델을 수정하여 사용한다. 그리고 분류기를 포함한 SeqGAN이 긍/부정 감성인식 학습데이터를 자동 생성할 수 있는지 실험한다. 실험을 수행한 결과, 분류기를 포함한 SeqGAN 모델이 생성한 문장과 학습데이터를 혼용하여 학습할 경우 실제 학습데이터만 학습 시킨 경우보다 좋은 정확도를 보였다.
Proceedings of the Korean Operations and Management Science Society Conference
/
1996.04a
/
pp.358-361
/
1996
공정계획은 숙련된 작업자의 경험의 경험과 지식에 의해서 작성된다. 이러한 과정을 컴퓨터를 활용하여 자동화함으로써 공정계획을 수립하는 시간은 물론 이와 연관된 설계변경, 설비선정, 견적, 재고관리 등 반복적인 업무의 스피드와 정확도를 향상시킬 수 있으며, 비숙련자라도 쉽게 공정을 파악하고 최선의 공정계획을 수립할 수 있다. 자동차 외판제조용 대형 프레스 금형을 대상으로 자동화된 공정계획 시스템을 구현하기 위해 비공식 또는 공식으로 일어나고 있는 공정에 관한 지식을 수집, 분석하여 금형의 패턴과 형구, 부품, 사양으로 분류하여 표준화하였고, 이를 기반으로 공정계획을 컴퓨터가 자동으로 생성할 수 있도록 공정에 관한 Knowledge를 Relational Data Model로 표현하였다. 자동공정계획 시스템은 단계별 Tree 방식으로서, 각 단계마다 시스템이 제공하는 질의에 대해 설계자 또는 공정계획자가 설계도면을 참고하여 이에 대응하면 해당 금형에 대한 적합한 공정계획과 작업공수가 제시되도록 설계 개발되었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.11a
/
pp.159-160
/
2017
본 논문에서는 무인기를 통해 수집한 영상을 과학적 분석 및 매핑이 가능한 영상으로 산출하는 자동 기하보정 시스템을 제안한다. 해당 시스템은 무인기를 활용하여 상시적으로 재난 상황을 촬영하여 감시 및 분석을 하며, 무인기에 탑재된 다중복합 센서 데이터의 실시간 처리 분석을 통해 국지적 홍수 재난의 감지 예측 및 상황대응을 지원하고, 통합경보 시스템과 연동하여 대국민 재난 정보를 제공하는 서비스를 위한 요소 기술이다. 현재 본 서비스를 제공할 수 있는 Front to End 시스템이 개발 완료되어 실제 필드에서의 재난 감시 및 예측 성능을 검증하기 위한 필드 테스트를 준비 중에 있다. 이에 본 논문에서는 현재 구축하고 있는 홍수 재난 관리 플랫폼에 대한 내용을 간단히 소개하고, 중요한 기능중 하나인 무인기 촬영 영상의 자동기하보정 시스템에 대해서 논한다.
본 연구는 Wilcoxon Rank Sum Test 기법을 이용한 자동 돌발상황 검지 모형을 개발하는 것이다. 본 연구의 수행을 위하여 고속도로에 설치된 루프 차량 검지기(Loop Vehicle Detection System)에서 수집된 점유율 데이터를 사용하였다. 기존의 검지모형은 산정하기가 까다로운 임계치에 의하여 돌발상황을 검지하는 방식이었다. 반면 본 연구 모델은 위치와 시간대 교통 패턴에 관계없이 모형을 일정하게 적용하며, 지속적으로 돌발상황 지점과 상·하류의 교통패턴을 비교 검정 기법인 Wilcoxon Rank Sum Test 기법을 사용하여 돌발상황 검지를 수행하도록 하였다. 연구모형의 검증을 위한 테스트 결과 시간과 위치에 관계없이 정확하고 빠른 검지시간(돌발 상황 발생 후 2∼3분)을 가짐을 알 수 있었다. 또한 기존의 모형인 APID, DES, DELOS모형과 비교검증을 위하여 검지율 및 오보율 테스트를 수행한 결과 향상된 검지 능력(검지율 : 89.01%, 오보율 : 0.97%)을 나타남을 알 수 있었다. 그러나 압축파와 같은 유사 돌발상황이 발생되면 제대로 검지를 하지 못하는 단점을 가지고 있으며 향후 이에 대한 연구가 추가된다면 더욱 신뢰성 있는 검지모형으로 발전할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.