• Title/Summary/Keyword: 자동분류시스템

Search Result 785, Processing Time 0.026 seconds

요구사항 분류 언어를 통한 반 자동 품질 요구사항 분류

  • Park, Su-Yong;Min, Seong-Gi;Choe, Sun-Hwang
    • 시스템엔지니어링워크숍
    • /
    • s.1
    • /
    • pp.127-133
    • /
    • 2003
  • 시나리오 형태의 요구사항 분류는 ATAM, SAAM, Software Quality Metric 과 같은 품질 요구사항 분석 및 평가 방법 등 많은 분야에 응용된다. 이들 기법들은 소프트웨어 시스템의 품질 요구사항을 분석, 평가하기에 앞서 초기 수집된 요구사항들을 분류하게 된다. 그러나 요구사항을 분류하는 일은 수작업을 통해 이루어지게 되고, 따라서 미 분류, 중복분류, 등의 결함을 가질 수 있다. 결함의 가능성을 요구사항의 수가 많은 대형 프로젝트 일수록 높아지게 된다. 따라서 본 논문에서는 요구사항 분류언어를 통한 품질 요구사항 자동 분류 기법을 제안한다. 제안된 기법은 분류언어와 유사도를 이용한 2 단계 분류기법을 이용하였다. 분류언어는 각 도메인별로 개발되어 비슷한 도메인일 경우 재사용될 수 있다. 이를 검증하기 위해, 본 논문에서는 15 여개의 프로젝트로부터 수집된 요구사항을 이용해 실험을 수행하고 그 결과를 분석, 평가 하였다.

  • PDF

Study on Automatic Classification System of News based on NewsML (NewsML 기반의 뉴스 자동 분류 시스템에 관한 연구)

  • Tak-Hee Lee;Gumwon Hong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.619-622
    • /
    • 2008
  • 뉴스 분류 체계는 각각의 기사에 정치, 경제, 사회 등 가장 적합한 주제별로 분류하는 것으로 언론사별 분류 체계는 통일성이 없이 전혀 다르게 구성되어 사용하고 있다. 이로 인해 방대한 콘텐트를 통합하는데 많은 어려움이 있으며, 그만큼 시스템과 인력에 대해 중복 투자가 되고 있다. 이런 문제점을 개선하기 위해 국제 표준인 NewsML에 기반한 뉴스 분류에 대해 제안한다. NewsML은 XML 기반의 유연성과 확장성이 있는 구조적인 표준 형식으로 다양한 데이터 표현이 가능하여 자동 문서 범주화에 필요한 중요한 자질 선택이 가능하다. 본 논문에서는 NewsML 형식으로 되어 있는 뉴스와 그렇지 않은 뉴스를 구분하여 자동 분류에 대한 비교 실험을 한다. NewsML의 구조화된 정보를 활용한 실험이 뉴스의 제목과 본문만으로 실험한 결과보다 좋은 성능을 보여 주었으며, 그 중에서 자질 공간이 아주 큰 경우에 유용하고 문서 분류에 효과가 뛰어난 지지 벡터 기계 모델이 가장 좋은 성능을 보였다.

Semi-Automatic Building of Korean Classifiers in English-Korean MT (영한 자동번역에서의 한국어 분류사의 반자동 구축 방법)

  • Lee, Ki-Young;Choi, Sung-Kwon;Kim, Young-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2008.10a
    • /
    • pp.135-139
    • /
    • 2008
  • 본 논문은 영한 기계번역에서 영어 수사가 포함된 영어 명사구를 한국어로 번역할 때, 영어 명사에 대응되는 한국어 명사의 적절한 분류사를 반자동으로 구축하는 방법에 대해 기술한다. 영한 번역의 측면에서, 분류사는 목표언어인 한국어에서만 나타나는 현상이다. 따라서 영어를 한국어로 번역할 때, 적절한 분류사를 생성하지 않으면 한국어 어법에 맞지 않는 부자연스러운 번역 결과를 생성한다. 본 논문에서는 한국어 태그드 코퍼스와 한국어 의미코드 체계에 따라 한국어 분류사를 반자동으로 구축하는 방법을 제안한다. 제안하는 방법에 따라 한국어 명사에 대해서 한국어 분류사가 구축되었으며, 이렇게 구축된 분류사는 영한 기계번역시스템의 번역 사전에 'KCOUNT'라는 자질을 할당하여 부가하였다. 제안하는 방법의 검증을 위해 수동평가와 자동평가를 수행하였으며, 그 결과, 영한 기계번역의 문장 생성에 있어서 자연스러움(fluency)의 측면에서 번역률 향상이 있었다.

  • PDF

Automatic Classification of Patent Documents Using Doc2Vec (Doc2Vec을 이용한 특허 문서 자동 분류)

  • Song, Jinjoo;Kang, Seung-Shik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.239-241
    • /
    • 2019
  • 지식과 정보의 중요성이 강조되는 지식기반사회에서는 지식재산권의 대표적인 유형인 특허의 중요성이 날로 높아지고 있고, 그 수 또한 급증하고 있다. 특허 문서의 효과적 검색과 이용을 위해서는 새롭게 출원되는 특허 문서의 체계적인 분류 작업이 선행되어야 하고, 따라서 방대한 양의 특허 문서를 자동으로 분류해주는 시스템이 필요하다. 본 연구에서는 Doc2Vec 모델을 이용하여 국내 특허 문서의 특징(feature)을 추출하고, 추출된 특징을 바탕으로 한 특허 문서의 자동 분류 모형을 제안한다. 먼저 국내에 등록된 31,495 건의 특허 문서의 IPC(International Patent Classification)와 요약정보를 바탕으로 Doc2Vec 모델을 구축하였다. 구축된 Doc2Vec 모델을 통하여 훈련데이터의 특징을 추출한 후, 이 특징 벡터를 이용하여 분류기를 학습하였다. 마지막으로 Doc2Vec 모델을 이용하여 실험데이터의 특징 벡터를 추출하고 분류기의 성능을 실험한 결과, 43%의 분류 정확도를 얻었다. 이를 통해, 특허 문서 분류 문제에 Doc2Vec 모델의 사용 가능성을 확인할 수 있었다.

Document Autoclustering for Web Agent (웹 에이전트를 위한 문서 자동 분류)

  • 양찬범;박영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.54-56
    • /
    • 1999
  • 웹 에이전트는 사용자가 웹을 브라우징하는 행위를 모니터하여 사용자의 관심정보를 학습하고 사용자가 필요로 한느 웹 상의 정보를 제공하는 시스템이다. 웹 에이전트는 사용자의 관심정보를 추출하기 위해서 귀납적 기계학습을 수행한다. 이때, 학습의 효율을 높이기 위해서는 관련이 있는 문서들을 그룹화하여 학습 시스템에 제공하여야 한다. 본 논문에서는 비감독 개념 학습 알고리즘인 COBWEB을 이용하여 사용자가 관심을 표시한 문서들의 분류트리를 생성한다. 분류트리는 귀납적 기계학습 시스템의 입력으로 사용될 수 있는 형태가 아니므로 분류 트리의 분석과 문서 분류 후처리 작업을 통해서 문서 집합을 생성해야 한다. 이를 위해서는 분류트리를 분석하여 초기 클러스터를 생성하고, 유사한 클러스터들의 병합을 수행한다. 본 논문에서 제안하는 문서 자동 분류 방식은 비감독 개념 학습 알고리즘이 생성한 문서 분류 트리의 분석을 통해서 충분한 유사도와 적절한 수의 문서를 포함하는 초기 클러스터를 생성할 수 있다. 그러므로 문서 분류의 후처리 작업인 클러스터의 병합 작업에서 불필요한 작업을 제거함으로서 보다 효과적이고 합리적인 문서 분류 작업을 수행한다.

  • PDF

A Study on Classification Support Expert System Design based on Note Analysis for DDC 20 Tables (DDC 20판의 주기 분석에 근거한 보조표 분류지원 전문가시스템 설계에 관한 연구)

  • 김상미;남태우
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 1994.12a
    • /
    • pp.129-132
    • /
    • 1994
  • DOC 20판에서는 보조표 활용을 위하여 다양한 형태의 주기(Note)가 여러 곳에 마련되어 있다. 이 주기는 새로운 학문들이 이전판의 분류체재와의 중복성을 극복하고, 정확한 문헌분류를 위한 중요한 문법규칙들을 포함하고 있다. 그러나. 기술된 주기의 다양성이 제대로 정리되어 있지 않아서 이 주기의 활용은 미흡한 실정이다. 따라서, 본 연구는 DDC 20판의 보조표 T1(표준세분표: Standard Subdivisions) 및 T2(지리, 시대, 인물 구분표: Geographic Areas, Historical Periods, Persons)에 대안 이용주기를 통계적 빈도수를 고려하여 분석하고, 분석된 주기를 유형별로 분류하여 각 유형별 분류기호 생성 문법을 마련하였으며, 분류기호 생성 문법을 유도트리(Derivation tree)를 활용하여 정확한 분류과정을 예시하고, 이를 자동분류시스템으로 활용할 수 있는 분류진원 전문가시스템 모형을 설계하였다.

  • PDF

An Automated Industry and Occupation Coding System using Deep Learning (딥러닝 기법을 활용한 산업/직업 자동코딩 시스템)

  • Lim, Jungwoo;Moon, Hyeonseok;Lee, Chanhee;Woo, Chankyun;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.23-30
    • /
    • 2021
  • An Automated Industry and Occupation Coding System assigns statistical classification code to the enormous amount of natural language data collected from people who write about their industry and occupation. Unlike previous studies that applied information retrieval, we propose a system that does not need an index database and gives proper code regardless of the level of classification. Also, we show our model, which utilized KoBERT that achieves high performance in natural language downstream tasks with deep learning, outperforms baseline. Our method achieves 95.65%, 91.51%, and 97.66% in Occupation/Industry Code Classification of Population and Housing Census, and Industry Code Classification of Census on Basic Characteristics of Establishments. Moreover, we also demonstrate future improvements through error analysis in the respect of data and modeling.

Automatic Classification of Learning Objects Using Case-based Cohesion for Learning Management System (학습관리시스템을 위한 사례 기반 응집도를 이용한 학습객체 자동 분류)

  • Kim, Hyung-Il;Yoon, Hyun-Nim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2785-2791
    • /
    • 2012
  • In this paper, a method for automatic classification of learning objects is proposed for effective management and reuse of learning contents. Proposed method will create cohesion of learning objects using cases of learning objects and perform automatic classification of learning objects by measuring their relationship based on cohesion. Application of proposed method to learning management system has the advantage of reducing the costs for developing learning contents. Simulation has shown the average accuracy of 28.20% with probability-based method and 56.38% with cohesion-based method. Simulation has proved that the method proposed in this paper is effective in automatic classification of learning objects.

Document Classification of Green Technology Literature based on Support Vector Machines (녹색기술문헌 자동 범주화를 위한 문서 분류기 개발)

  • Joo, Won-Kyun;Park, Min-Woo;Choi, Ki-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.1762-1763
    • /
    • 2012
  • 최근에 이슈화되고 있는 녹색기술문헌의 중요성에 부합하여 녹색기술 문헌을 자동으로 분류해주는 문서 분류시스템 개발하였다. 분류체계로는 14개의 관심 녹색기술 분류 체계를 선택하였고, 다양한 문서 분류 기법 중 SVM(Support Vector Machine)에 기초를 둔 방법을 이용하였다. 문서 벡터를 생성할 때 제목과 본문에 동일한 가중치를 적용하는 방법을 벗어나서 제목의 키워드에 좀 더 높은 가중치를 부여하는 방식을 적용하여 성능평가를 수행하였다.

A Study on Auto-Tuning Method of learning Rate by Using Fuzzy Logic System (퍼지 논리 시스템을 이용한 학습률 자동 조정 방법에 관한 연구)

  • 주영호;김태영;김광백
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.484-489
    • /
    • 2003
  • 본 논문에서는 역전파 알고리즘의 성능 개선을 위해 퍼지 논리 시스템을 이용한 학습률 자동 조정 방법을 제안한다. 제안된 방법은 목표값과 출력값의 차이에 대한 절대값이 $\varepsilon$ 보다 적거나 같으면 정확성으로 분류하고 크면 부정확성으로 분류한다. 정확성의 총 개수를 퍼지 논리 시스템에 적용하여 학습률과 모멘텀을 동적으로 조정한다. 제안된 방법을 XOR 문제와 숫자패턴 문제에 적용하여 실험한 결과, 기존의 역전파 알고리즘, 모멘텀 방식, Jacob의 delta-bar-delta 방식보다 성능이 개선됨을 확인하였다.

  • PDF