• Title/Summary/Keyword: 자기 치유

Search Result 219, Processing Time 0.019 seconds

Self Healing System for Concrete Surface Crack using Polymer based Coating Agent Incorporating Microencapsulated Healing Agent (마이크로캡슐을 함유한 폴리머 코팅제의 콘크리트 표면균열 자기치유시스템)

  • Shin, Ki-Su;Ryu, Byung-Chul;Wang, Xiao-Yong;Park, Ki-Bong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.579-587
    • /
    • 2015
  • In this paper, microencapsulated healing agent was embedded in the polymer matrix to obtain self healing properties. Microencapsulation of methacrylate using polyurea-formaldehyde as a shell material and studied the effect of agitation rate on capsule characteristics such as size, shell thickness, and surface morphology. The formation of microcapsules was confirmed by FTIR and TGA, and capsule characteristics were studied by optical microscopy and SEM. The self-healing effect was evaluated using permeability measurements and further confirmed by surface analytical tools including optical microscope. According to the experimental results, the microencapsulated healing system has the self-heaing ability for artificial cracks.

Anticorrosive Coating Material with Dual Self-healing Capability for Steel Coating (이중 자기치유 메커니즘을 통한 강판의 내부식성 코팅)

  • Lee, Hyang Moo;Yun, Sumin;Kim, Jin Chul;Cho, Soo Hyoun;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.22 no.2
    • /
    • pp.47-56
    • /
    • 2021
  • Steel plates coated by self-healable polymer still can be rusted since it takes time to be healed. In this study, dual self-healing coating material is developed using corrosion inhibitor (DTBEDA) which can form hindered urea (HUB) as reversible cross-linking bond at the same time. Developed dual self-healing polymer is coated on steel plate, and scratch healing property was investigated by surgical blades and nano/micro indentation tester. The anticorrosion effect of DTBEDA was investigated by electrochemical impedance spectroscopy (EIS).

Evaluation Method of Healing Performance of Self-Healing Materials Based on Equivalent Crack Width (등가균열폭에 기반한 자기치유 재료의 치유성능 평가 방법)

  • Lee, Woong-Jong;Kim, Hyung-Suk;Choi, Sung;Park, Byung-Sun;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.383-388
    • /
    • 2021
  • In this study, constant head water permeability test was adopted to evaluate self-healing performance of mortars containing inorganic healing materials which consist of blast furnace slag, sodium sulfate and anhydrite. Clinker powder and sand replaced for a part of cement and fine aggregates. On constant head water permeability test for self-healing mortars, unit water flow rate of mortar specimens were measured according to crack width and healing period. As a result of evaluating the healing performance of self-healing mortar, it was confirmed that with the initial crack width of 0.3mm, the healing rate at healing period of 28 days increased by more than 30%p compared to plain mortar, greatly improving the healing performance. Furthermore, the coefficient(α) which was estimated from the relationship between crack width and unit water flow rate was used for calculating equivalent crack width. By analyzing the correlation of healing rate and equivalent crack width, the time and initial crack width attaining healing target crack width were predicted.

An Experimental Study on the Self-Healing Performance of Solid Capsules According to the Composition Ratio of Crystal Growth Type Inorganic Materials (결정성장형 무기재료 조성비에 따른 고상 캡슐의 자기치유 성능에 관한 실험적 연구)

  • Nam, Eun-Joon;Oh, Sung-Rok;Kim, Cheol-Gyu;Choi, Yun-Wang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.16-22
    • /
    • 2021
  • In this paper, a solid capsule was prepared using a crystal growth type inorganic material capable of hydration reaction. The solid capsules were mixed at 3, 5, and 10% according to the composition ratio of 8:2, 7:3, 6:4 based on the cement mass, and the self-healing mortar was mixed, Durable healing properties were evaluated through the water permeability test. As a result of the water level permeability test, the effect of optimally improving the natural healing performance was shown by mixing the solid capsules prepared in a composition ratio of 7:3 of the solid capsules. In the case of a crack width of 0.3mm or less, it is estimated that more than 90% of the self-healing performance can be secured. As a result, it was judged that the self-healing performance of the solid capsule had an effect on the durable healing properties through the water permeability test, It is judged that there is a tendency to improve self-healing performance according to the mixing of solid capsules.

The Crack Healing Properties of Cement Mortar Materials Using Crystal Growth Type Self-Healing Solid Capsules According to the Crack Induction Age (균열 유도 재령에 따른 결정성장형 자기치유 고상캡슐 활용 시멘트 모르타르의 균열 치유 특성)

  • Choi, Yun-Wang;Nam, Eun-Joon;Kim, Cheol-Gyu;Oh, Sung-Rok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.475-482
    • /
    • 2020
  • In this study, three levels of solid capsules were prepared according to the composition ratio of core materials for the crystal growth type self-healing solid capsule, and a cement mortar was prepared with the crystal growth type self-healing solid capsule. The prepared solid capsule was mixed with 3% of the cement mass to evaluate the healing properties according to the crack induction age of the cement mortar. As a result of test, the crack healing properties according to the crack induction age of cement mortar mixed of solid capsules, it was confirmed that the self-healing performance of the cement mortar with the solid capsules was increased self-healing performance of 7 days than 28 days. This is because the unhydrated binder remains.

The Experimental Study on Preparation Characteristics of Self-healing Microcapsules for Mixing Cement Composites Utilizing Liquid Inorganic Materials (액상 무기재료를 활용한 시멘트 복합재료 혼합용 자기치유 마이크로 캡슐의 제조 특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Kim, Cheol-Gyu;Lim, Hak-Sang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.236-244
    • /
    • 2018
  • In this study, we tried to fabricate self - healing microcapsules using liquid inorganic materials which can be mixed directly with cement composites. The basic properties of the liquid inorganic material were evaluated and microencapsulation was performed. The focus of this paper is on the quality and manufacturing characteristics of cement composites rather than the healing effects of self - healing microcapsules according to mixed capsules. Test results, the self-healing microcapsules encapsulate liquid inorganic material which is stable at room temperature and has high crack followability, and the yield is over 90%. The size of self - healing microcapsule was able to change according to the synthetic agitation speed and it was able to secure more than 70% of target size. In addition, the loss of less than 10% was found to occur through the membrane strengthening of self - healing microcapsules, and it could be reduced by 50% compared with the case without membrane strengthening.

Crack Self-Healing Performance According to Absorption Test of Fiber Reinforced Concrete (콘크리트의 흡수율에 따른 균열 자기치유 성능)

  • Woo, Hae Sik;Park, Byoung Sun;Yoo, Sung Won;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.122-129
    • /
    • 2019
  • Cracks in concrete structures are inevitable phenomena caused by shrinkage, hydration heat, and external loads. These cracks facilitate the penetration of external harmful ions into the concrete, which greatly reduces its durability. Recently, self-healing concrete has been actively studied. Also, self-healing fiber-reinforced concrete have been studied to control the crack in concrete and to maximize the shelf-healing capability. In this study, mortar specimens containing PVA fiber, fly ash and crystalline admixture were fabricated. The compressive and flexural strength were evaluated. Also, the self-healing performance was evaluated by the absorption test. From the results, it was confirmed that the amount of water absorbed by healing of the crack decreased as time increased. It was also found that PVA fiber is beneficial for the production of calcium carbonate, an additional healing product.

An Experimental Study on the Quality and Crack Healing Characteristics of Repair Mortar Containing Self-Healing Solid Capsules of Crystal Growth Type (결정성장형 자기치유 고상캡슐을 혼합한 보수 모르타르의 품질 및 균열 치유 특성에 관한 실험적 연구)

  • Oh, Sung-Rok;Kim, Cheol-Gyu;Nam, Eun-Joon;Choi, Yun-Wang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.59-66
    • /
    • 2020
  • In this study, self - healing solid capsules of crystal growth type which can be mixed directly with repair mortar were prepared, and the quality and crack healing performance of repair mortar with self - healing solid capsules were evaluated. The table flow and the air flow rate of the repair mortar material mixed with self-healing solid capsules were found to have no significant influence on table flow and air volume regardless of mixing ratio. Compressive strength tended to decrease with increasing capsule mixing ratio. As a result of evaluation of crack healing properties according to constant water head permeability test, initial water permeability decreased, and reaction products were generated over time and cracks were healed.

The Self-healing and Ageing Effect of OPC-GGBFS Cement in Sea-water and Tap-water (해수와 담수에서 OPC-GGBFS 시멘트의 자기치유와 재령효과)

  • Kim, Tae-Wan;Kang, Choonghyun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.11-21
    • /
    • 2017
  • The paper presents experimental results of self-healing effects of OPC-GGBFS paste with cracked and uncracked specimens. The self-healing of cracked specimens is processes of crack closing with re-hydration of unhydrated in crack surface. The OPC paste with GGBFS replacement ratios of 0%, 10%, 20% and 30% were prepared having a constant water-binder ratios of 0.5. The OPC-GGBFS paste specimens immersed in tap-water and sea-water. The temperature of tap and sea-water was $5^{\circ}C$, $15^{\circ}C$ and $25^{\circ}C$. The cracked specimens after deterioration were immersed for 60 days. The relationship between self-healing effect and age-effect was calculate based upon the experimental results. The self-healing effect was measured in ultrasonic pulse velocity (UPV) before and after loading. When the relative change rate of UPV is increases with the increase in GGBFS replacement ratios. Moreover, the self-healing effect is increased with the temperature of tap-water is increase. But the cracked specimens immersed in sea-water was unclear effects of different temperature. Furemore, most of the healing for OPC-GGBFS specimens immersed in tap-water and sea-water occurred during the first 30 days. The self-healing effect until 30 days is higher than that the age-effect. After 30 days, self-effect and age-effect was largely decreases. SEM/EDS analysis of crack on the surface of the specimens in tap-water were covered with aragonite, and sea-water were covered with brucite.

Quality and Long-tern Aged Healing Properties of Self-healing Surface Protection Materials Using Solid Capsules (고상캡슐을 활용한 자기치유 표면보호재의 품질 및 장기재령 치유특성)

  • Oh, Sung-Rok;Nam, Eun-Joon;Kang, Shin-Taeg;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.397-404
    • /
    • 2021
  • In this study, it was reviewed that the effect of solid capsules on the quality of surface repair materials and the healing properties of long-term aging, as part of a study to utilize self-healing surface repair materials using solid capsules as repair materials. As a result of evaluation of the rheological properties of self-healing surface repair materials according to the mixing of solid capsules, plastic viscosity, yield stress, and table flow tended to decrease. In the case of compressive strength, 1MPa per 1% of the solid capsule decreased proportionally. As a result of evaluating the long-term healing properties, when 10% of solid capsules were mixed, a healing rate of 90% was shown at 28 days of healing, because the solid capsule was preserved even after 91 days of age had elapsed. after 91 days of healing, even in the case of 5% of solid capsules, a healing rate of 90% was shown.