본 논문에서는 생체인식 분야 중 얼굴인식의 검색 정확성 향상 및 검색 시간을 단축하기 위한 단계로 인종별 얼굴영상 데이터베이스에 대한 군집화 기법을 연구하였다. 우선, 일반적으로 얼굴 및 이미지 검색에 사용되는 다양한 특징을 추출하고, 추출한 다차원의 특징 데이터들로부터 다 인종 얼굴 데이터를 유사한 인종별로 정확하게 군집화 하기 위해 최적의 특징벡터를 자동으로 선택 할 수 있는 방법을 제안하였다. 군집결과 분석을 위해 자기 조직화 지도 모형을 이용하였는데, 이는 2차원 분석 및 가시화에 유용하며, 학습 후 코드북벡터를 사용하여 유사한 의미간의 거리부터 검색할 수 있는 특징을 가지고 있다. 특징추출에 관한 실험결과 인종별 구분을 위한 특징벡터로는 웨이블릿 주파수 성분(lowpass 성분)과 CbCr 특징벡터가 인종별 군집화에 가장 유용한 특징으로 선택되었으며. 추출된 특징을 바탕으로 semantic map을 구성하여 제안방법의 효율성을 제시하였다.
특징정보를 기반으로 한 유사 이미지 검색은 이미지 데이타베이스에 있어서 중요한 과제의 하나이다. 이미지 데이타의 특징정보는 각 이미지를 식별하는데 유용한 정보이다. 본 논문에서는 자기 조직화 맵 기반의 고속 k-NN 탐색 알고리즘을 제안한다. 자기 조직화 맵은 고차원 특징벡터를 2차원 공간에 맵핑하여 위상특징 맵을 생성한다. 위상특징 맵은 입력 데이타의 특징공간과 상호관계(유사성)를 가지고 있으며, 인접노드에 서로 유사한 특징벡터가 클러스터링된다. 그러므로 위상특징 맵상의 각 노드에는 노드 벡터와 각 노드벡터에 가장 가까운 유사 이미지가 분류된다. 이러한 자기 조직화 맵에 의한 유사 이미지 분류결과에 대하여 k-NV 탐색을 구현하기 위하여, (1) 위상특징 맵에 대한 접근방법, (2) 고속탐색을 위한 pruning strategy의 적용을 실현하였다. 본 연구에서는 실험을 통하여 실제 이미지로부터 추출한 색상 특징을 사용하여 제안한 알고리즘의 성능을 평가함으로써 유사 이미지 검색에 유효한 견과를 얻을 수 있었다.
자기조직화지도는 고차원의 원자료를 노드들로 이루어진 저차원의 공간으로 투영하는 비지도학습 방법이다. 이 방법은 고차원의 자료를 노드들을 사용하여 2 또는 3차원의 공간에서 시각화할 수 있고, 이를 통해 자료의 특성을 탐색하는데 유용하다. 자료의 구조를 파악하기 위해 종종 노드들에 대한 군집분석을 시도하는데, 군집분석의 중요한 문제중 하나는 군집의 개수를 결정하는 것이다. 이 문제를 해결하기 위해 다양한 군집타당성지수들이 지금까지 개발되어 왔고, 이러한 지수들은 자기조직화지도의 노드들의 군집분석에 직접적으로 적용될 수 있다. 그러나, 자기조직화 지도가 원자료의 위상적 특성을 저차원 공간에 반영할 수 있다는 특징을 갖는데 반해, 이러한 일반적인 지수들은 이를 고려하지 않는 문제가 있다. 이에 본 연구에서는 원자료의 위상적 특성을 고려한 노드들 사이의 연결강도를 기반으로 하는 군집타당성지수를 제안한다. 이 새로운 군집타당성지수의 성능은 모의실험을 통해 기존의 군집타당성지수들과의 비교되고 검증된다.
본 논문은 손 형상 인식을 위한 보다 안정적이며 조명 변화와 회전에 강인하게 손 영역을 검출하며, 계산의 효율성과 검출 성능을 동시에 만족시키는 강인한 검출 알고리즘에 대해 제안한다. 제안한 알고리즘은 단일 카메라 환경에서 손 형상을 입력정보로 사용하여 전처리 과정을 거쳐 손 영역만을 분할한 후 자기조직화 특징 지도(SOFM: Self Organized Feature Map) 알고리즘을 이용하여 손 형상을 인식하게 된다. 그러나 조명 변화에 민감하고 자유도가 큰 손 영역을 정확히 인식하기란 쉽지 않으며 오차 범위도 크기 때문에 본 논문에서는 인식률을 높이기 위해 각각의 손 형상에 대한 회전 정보를 데이터베이스화 한 후 주성분 분석을 적용하여 군집화 함으로서 인식오차를 줄였다. 또한 차원 축소로 인해 많은 계산 량이 요구되지 않기 때문에 실시간 인식 시간도 줄일 수 있었다.
The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal defect diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised learning algorithm is used to improve the quality of the classifier decision regions.
The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal vibration diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised teaming algorithm is used to improve the quality of the classifier decision regions.
합류부는 인공수로 또는 자연하천에서 흔히 존재하며 매우 복잡한 흐름 구조가 발생하는 곳이다. 특히 본류와 지류의 유속장의 차이에 따라 발생하는 전단층은 흐름과 물질이 혼합되는 경계면이 되며, 흐름 구조가 전단층을 따라 발달한다는 특징으로 인해 수리학적으로 매우 중요하다. 최근 원격탐사 기법의 발전에 따라 위성이나 드론과 같은 무인 이동체를 이용한 하천 계측법이 수질 및 지형변화 연구들에 광범위하게 적용되고 있다. 그 중 RGB 항공영상은 해상도가 높고 취득 비용이 저렴하여 확장성 및 활용도가 높다. 본 연구에서는 합류부 전단층이 촬영된 RGB 항공 영상을 이용해 합류부 전단층 분석에 활용하는 방법을 제안한다. 제안되는 방법은 RGB 항공 영상에서 본류와 지류의 수체 영역을 각각 추출하기 위해 가우시안 혼합 모형(Gaussian mixture model)을 이용한다. 추출된 수체 영역에는 자기조직화지도(self-organizing map)을 적용하고 좌표 변환을 하여 정량적인 특징을 추출한다. 본 연구에서는 알고리듬의 적용 예로서 구글어스를 통해 확보된 낙동강-남강 합류부의 항공 영상을 분석한다. 본 추출법을 이용하면 접촉식 센서를 이용하는 기존의 전단층 계측 방법들에 비해 경제적이고 안전하며 합류부 흐름의 평면적 분석을 가능하게 할 수 있을 것으로 기대된다.
최근 인공지능, 딥러닝, 빅데이터 등 4차 산업의 핵심 분야에 대한 관심이 커지면서 기존의 의사결정 문제를 전통적인 방법론의 한계점을 최소화하는 과학적 접근 방식이 대두되고 있다. 특히 이런 과학적인 기법들은 주로 금융 상품의 방향성을 예측하는데 사용되는데 본 연구에서는 사회적으로 관심이 높은 아파트 가격의 요인을 자기조직화지도를 통해 분석하고자 한다. 이를 위해 아파트 가격의 실질 가격을 추출하고 아파트 가격에 영향을 주는 총 16개의 입력 변수를 선정한다. 실험 기간은 1986년 1월부터 2021년 6월까지이며 아파트 가격의 상승 및 횡보 구간을 나눠 각 구간 별 변수들의 특징을 살펴본 결과, 상승 구간과 횡보 구간의 입력 변수의 통계적 성향이 뚜렷하게 구분되는 것을 알 수 있었다. 더불어 U1~U3 구간이 N1~N3 구간에 비해서 변수들의 표준편차가 상대적으로 크게 나왔다. 본 연구는 중장기적으로 상승과 하락이라는 큰 주기를 갖고 있는 부동산에 대해서 현재 시점의 현황을 정량적으로 분석한 것에 의미가 있으며 향후 이미지 학습을 통해 미래 방향성을 예측하는 연구에 도움이 되기를 기대한다.
본 논문은 단일 카메라 환경에서 손 형상을 입력정보로 사용하여 손 영역만을 분할한 후 자기 조직화 특징 지도(SOFM: Self Organized Feature Map) 신경망 알고리즘을 이용하여 손 형상을 인식함으로서 수화인식을 위한 보다 안정적이며 강인한 인식 시스템을 구현하고자 한다.
집중호우에 의한 도시 유역의 침수 피해가 도시화에 따라 증가하는 추세이며, 이에 따라 정확하면서도 신속한 홍수예보 및 침수 예상도 표출이 필요하다. 특정 강우량에 따른 미지의 침수 범위를 예상하는 것은 도시 유역의 홍수에 대한 사전 대비에 매우 중요한 사안이며, 이를 위해 현재 홍수 예보와 관련된 정부기관에서 침수 피해 예상도를 주민들에게 제공하고자 하고 있다. 하지만, 특정 강우에 따른 정확한 침수 범위를 정량화하여 표출하는데 부족함이 있으며, 강우량과 지속시간에 따른 홍수의 크기에 대한 분석을 실시하고 수리학적 연계를 통한 준 실시간 침수범위 표출 방안을 고찰해야할 시기이다. 제시된 물리적 해석기반 자료를 이용하여 강우량-지속시간-침수량 관계곡선(Rainfall-Duration-Flooding quantity relationship curve, RDF)을 제시하고, 자율학습을 수행하는 자기조직화 특징 지도와 연계하여 미지의 침수 지도를 예측하였다. 예측한 침수 지도와 2차원 침수모형을 통한 결과를 비교하여, 제시된 방법론의 타당성을 검토하였다. 연구 결과를 통하여 중규모의 강우량 또는 빈도의 사상에 따른 미지의 침수범위를 제시하는데 용이할 것으로 판단된다. 더욱이 다양한 강우-월류량-홍수 양상을 내포하는 RDF 관계 곡선과 최적 침수예상도 데이터베이스를 구축함으로서 추후에 홍수예보의 기초자료로서 사용될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.