• Title/Summary/Keyword: 자기 저항

Search Result 890, Processing Time 0.024 seconds

Microstructure and Giant Magnetoresistance of AgCo Nano-granular Alloy Films (Ag-Co합금박막의 두께에 따르는 미세구조 변화 및 자기저항 거동)

  • 이성래;김세휘
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.3
    • /
    • pp.131-137
    • /
    • 1998
  • The thickness dependence of the microstructure and the giant magnetoresistance behavior of co-evaporated Co-Ag granular alloy films were investigated. The maximum magnetoresistance ratio of 24% was observed in the the as-deposited state of the 40 at. % Co alloy having 200 nm thickness. The surface scattering contributed about 20% to the total resistivity in the 20 nm thick films. The MR ratio dropped sharply when the film thickness was below 50 nm. The reduction in the Co particle size and the increase in solid solubility of Ag in fcc Co when the film thickness decreased were observed using a high resolution TEM. The aspect ratio of the Co particles was also affected by the film thickness. Those microstructural changes as well as the surface induced spin flipping play a significant role in the $\Delta$p change.

  • PDF

Effects of Buffer Layer and Annealing Temperature on Magnetororesistance in Co/Cu Multilayers (기저층 및 열처리 효과가 Co/ Cu 다층박막의 자기저항에 미치는 영향)

  • 김미양;최규리;최수정;송은영;이장로;황도근;이상석;박창만;이기암
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.2
    • /
    • pp.82-89
    • /
    • 1997
  • Dependence of magnetoresistance on the thickness of Cu, type and thickness of buffer layer, and the stacking number of multilayer in the form buffer /$[Co(17{\AA}/Cu(t{\AA})]_{20}$ were investigated. To evaluate effect of annealing on this samples, X-ray diffraction analysis, vibrating sample magnetometer analysis, and magnetoresistance measurement (4-probe method) were performed. The magnetoresistance ratio exhibits a maximum of 21% for the multilayer with Cu thickness of 24$\AA$ and Fe buffer layer thickness of 50$\AA$. Deposition of film under low base pressure induces in increase magnetoresistance ratio by preventing oxidation. The multilayer annealed below 30$0^{\circ}C$ temperature allowed larger textured grain without loss in the periodicity. Magnetoresistance ratios of the multilayer with Cu thickness of 24$\AA$ and 36$\AA$ were increased due to the increase in the antiferromagnetically coupled fraction after annealing.

  • PDF

Magnetoresistance in $Buffer/[CoFe/Cu]_N$Multilayer ($Buffer/[CoFe/Cu]_N$ 다층박막의 자기저항 특성)

  • 송은영;오미영;이현주;김경민;김미양;이장로;김희중
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.4
    • /
    • pp.216-223
    • /
    • 1998
  • DC magnetron sputtering 방법에 의해 Corning glass 가판 위에 제작한 buffer/[CoFe/Cu]N 형태의 다층작막에 대하여 자기저항비의 비자성층 Cu두께, 기저층 종류(Fe, Cu, Cr, Ta)와 두께, Ardkqfur, 다층 층수 및 열처리 의존성을 조사하였다. 자기저항비는 비자성층 Cu 두께에 따라 진동하였다. 기저층 Fe 및 Cr의 두께가 60$\AA$이고, 층수 N=15, Ardkqfur 5mTorr에서 극대자기저항비 14%를 보였으며 25$0^{\circ}C$까지의 시료에 대한 열처리는 다층박막의 주기성을 유지한 채 더 큰 결정립을 갖게 하여 자기저항비는 증가하였으나 그 이상의 온도에서는 계면 혼합 및 계면 확산에 의한 감소를 나타내었다. Cr기저층 시료가 Fe 기저층 시료보다 열적안정성이 더 좋은 것을 알 수 있었다.

  • PDF

Evanohm박막저항소자의 전기 및 자기적 특성연구

  • 이규원;유광민;김완섭;김동진
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.166-167
    • /
    • 2002
  • 현대 전자공학 기술은 집적회로를 이용하기 때문에 소형화, 일체화 등을 요구하고 있다. 이들 회로를 구성하는 소자중 저항체는 가장 기본적인 소자 중에 하나이고 저항자체로써 뿐만 아니라 IC칩 등 다른 전자소자들과 일체형을 이루기도 한다. 저항은 전류의 흐름을 제어하는 중요소자이므로 온도변화와 시간이 경과하여도 안정된 저항값을 유지해야 한다. Ni$_{72}$Cr$_{20}$Al$_3$Mn$_4$Si으로 구성된 Evanohm은 온도계수가 매우 작고, 시간이 경과하여도 초기의 저항값을 잘 유지하는 물질로 오래 전부터 알려져 왔다. (중략)

  • PDF

CoFe Layer Thickness and Plasma Oxidation Condition Dependence on Tunnel Magnetoresistance (CoFe의 삽입과 산화조건에 따른 자기 터널 접합의 자기저항특성에 관한 연구)

  • 이성래;박병준
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.196-201
    • /
    • 2001
  • The dependence of CoFe interfacial layer thickness and plasma oxidation condition on tunneling magnetoresistance (TMR) in Ta/NiFe/FeMn/NiFe/Al$_2$O$_3$/NiFe/Ta tunnel junctions was investigated. As the CoFe layer thickness increases, TMR ratio rapidly increases to 13.7 % and decreases with further increase of the CoFe layer thickness. The increase of TMR with the CoFe thickness up to 25 was thought to be due mails to the high spin-polarization of CoFe. The maximum MR of 15.3% was obtained in the Si(100)/Ta(50 )/NiFe(60 )/FeMn(250 )/NiFe(70 )/Al$_2$O$_3$/NiFe(150 )/Ta(50 ) magnetic tunnel junction with a 16 Al oxidized for 40 sec using a Ar/O$_2$ (1:4) mixture gas.

  • PDF

A Study on Magnetoresistance Uniformity of NiFE/CoFe/AlO/CoFe/Ta TMR Devices Prepared by ICP Sputtering (ICP 스퍼터를 이용한 NiFe/CoFe/AlO/CoFe/Ta TMR 소자 제작에 있어서의 자기저항 균일성 연구)

  • 이영민;송오성
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.189-195
    • /
    • 2001
  • We prepared TMR junctions of NiFe(170 )/CoFe(48 )/Al(13 )-O/CoFe(500 )/Ta(50 ) structure on 2.5$\times$2.5 $\textrm{cm}^2$ area Si/SiO$_2$ substrates in order to investigate the uniformity of magnetoresistance(MR) value using a ICP magnetron sputter. Each layer was deposited by the ICP magnetron sputter and tunnel barrier was formed by the plasma oxidation method. We measured MR ratio and resistance of TMR devices with four-terminal probe system by applying external magnetic field. Although we used ICP sputter which is known as superior to make uniform films, the standard variation of MR ratio was 2.72. The variation was not dependent on the TMR devices location of a substrate. We found that MR ratio and spin-flip field (H's) increased as the resistance increased, which may be caused by local interface irregularity of the insulating layer. The variation of resistance value was 64.19 and MR ratio was 2.72, respectively. Our results imply that to improve the insulating layer fabrication process including annealing process to lessen interface modulation in order to mass produce the TMR devices.

  • PDF

Study on the Specular Effect in NiO spin-valve Thin Films (NiO 스핀밸브 박막의 Specular Effect에 의한 자기저항비의 향상에 대한 연구)

  • Choi, Sang-Dae;Joo, Ho-Wan;Lee, Ky-Am
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.231-234
    • /
    • 2002
  • Magnetic properties are investigated for top- and bottom-type spin valves of Si/SiO$_2$/NiO(60nm)/Co(2.5nm)/Cu(1.95nm)/Co(4.5nm)/NOL(t nm; Nano Oxide layer). The MR ratios of the bottom-type spin valves with NOL are larger than those of the top-type spin valves. However, the enhancement of the former is lower than the latter. Both of spin-valves also showed almost constant Ap and smaller p. Enhanced MR ratios of spin valves with NOL result mainly from small values of with constant Ap which due to specular diffusive electron scattering at NOL(NiO)/metal interfaces.

Mgnetic and Magnetoresistance Behavior of AgCo Alloy Films and Fe/AgCo/Fe Sandwiches (AgCo 합금박막 및 Fe/AgCo/Fe 삼층막의 자기 및 자기저항 거동)

  • 김세휘;이성래
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.2
    • /
    • pp.104-110
    • /
    • 1999
  • The effect of the composition and the heat treatment on the magnetic and magnetoresistance properties in AgCo alloy films and Fe/AgCo/Fe trilayers prepared by the co-evaporation method were studied. As the alloy film thickness decreases, especially below 50 nm thick, the magnetoresistance decreases and the saturation field increases significantly. The change of the Co content, heat treatment, and deposition of the Fe under/over-layer were effective to prevent the reduction of the and the increasing of the saturation field. For 40 at.%Co sandwiches, the minimum saturation field was obtained in the 20 nm alloy film with 30nm Fe under-over layer annealed at 300 $^{\circ}C$ for 10 min. Its saturation field and the MR ratio were 1.01 kOe 5.16% respectively.

  • PDF

A Study on the Microstructures and Magnetic Properties (Fe-(BN, Sin)박막의 미세구조와 자기특성에 관한 연구)

  • 신동훈;이창호;안동훈;남승의;김형준
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.3
    • /
    • pp.138-143
    • /
    • 1998
  • We have investigated the magnetic properties of FeBN and FeSiN films deposited by RF magnetron reactive sputtering system. It was investigated that the compositions of B, Si and N were the main factors influencing the soft magnetic properties and film resistivity. The addition of small amount of N significantly improve the soft magnetic properties and electrical resistivity. The FeBN and FeSiN films were showed good soft magnetic properties which were Hc<1 Oe, Bs:19~19 kG and $\mu$'>1000 values. The composition of films were $Fe_{75}(BN)_{25},\;Fe_{78}(SiN)_{22}$ and resistivity was 100~120 $\mu$$\Omega$-cm. but, futher increase in B, Si and N concentration degraded the soft magnetic properties due to formation of nitride such as $Fe_4N$ compound.

  • PDF