• Title/Summary/Keyword: 자기 잡음

Search Result 373, Processing Time 0.022 seconds

Development of an Active Magnetic Noise Shielding System for a Permanent Magnet Based MRI (영구자석 MRI를 위한 능동형 자기 잡음 차폐시스템 기술 개발)

  • 이수열;전인곤;이항노;이정한
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.181-188
    • /
    • 2003
  • In this paper, we introduce a magnetic noise shielding method to reduce the noise effects in permanent magnet based MRI systems. Through FEM electromagnetic analyses, we have shown that the magnetic noise component parallel to the main magnetic field is the major component that makes various artifacts in the images obtained with a permanent magnet based MRI. Based on the FEM analyses, we have developed an active magnetic noise shielding system composed of a magnetic field sensor, compensation coils, and a coil driving system. The shielding system has shown a noise rejection ratio of about 30dB at the frequency below several Hz. We have experimentally verified that the shielding system greatly improves the image quality in a 0.3 Tesla MRI system.

Design and Implementation of the Magnetic Detection System Using the Geological Magnetic Filter (자기환경필터를 이용한 자기표적 검출 시스템의 설계 및 제작)

  • Kim, Won-Ho;Choi, In-Kyu;Park, Jong-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.148-153
    • /
    • 1999
  • In this paper, we developed and implemented the geological magnetic filter for the improvements of the signal to noise ratio of the magnetic detection system. Using the geological magnetic filter, we can remove the coherent noises in the time domain and improve the signal to noise ratio of the magnetic detection system. Numerical simulation results show that geological magnetic filter can excellently remove the sensor misalignment effects and the regular short range local noise as well as it delete the coherent noises. We confirmed that the geological magnetic filter improved the signal to noise ratio about 19dB and deleted the coherent noises with restoring the source magnetic signal through experiments by implemented system.

  • PDF

공간 모델링을 이용한 자기지전류 탐사의 전자기 잡음 예측

  • Lee, Chun-Gi;Lee, Hui-Sun;Gwon, Byeong-Du
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.112-123
    • /
    • 2005
  • 자기지전류 탐사의 적용에 있어 인공잡음의 영향은 탐사의 승패를 좌우하는 중요한 요소이며 인공잡음의 영향을 최소화할 수 있는 탐사의 설계와 자료처리가 요구되고 있다. 본 연구에서는 수치공간자료를 이용한 공간모델링을 통해 MT 주파수 대역에서의 잡음을 예측하고 실제 탐사 자료와 비교분석하여 MT 잡음 모델링을 가능성을 살펴보았다. 수치지도로부터 추출된 잡음원일 가능성이 높은 건물, 도로, 고압 송전선에 의해 발생하는 전자기장의 강도를 지하매질의 전기전도도에 따른 전자기파의 전파 특성을 고려하여 예측하는 잡음모델을 제안하였다. 제안된 잡음모델로부터 예측된 잡음 파워와 실제 탐사를 통해 측정된 MT 자료와의 상관도 분석을 수행한 결과, 전반적으로 전기장에서는 넓은 주파수 대역에서 높은 상관관계를 보이는 반면 자기장은 60 Hz 부근의 대역에서만 상관관계를 가진다. 본 연구에서 제안된 공간모델링을 통한 잡음 예측은 특히 고도로 산업화되어가는 도시 주변지역에서의 MT 탐사를 수행하는데 있어 유용한 정보를 제공할 수 있을 것이다.

  • PDF

A Theory of the Geological Magnetic Filter for the Improvement of the Signal to Noise Ratio of the Magnetic Detection System (자기 이상검출 시스템의 신호 대 잡음비 개선을 위한 자기환경 필터 이론)

  • Kim, Won-Ho;Kim, Eun-Ro;Yang, Chang-Sub;Choi, In-Kyu;Choi, Jun-Rim;Park, Jong-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.458-465
    • /
    • 1997
  • In this paper, a theory of the geological magnetic filter for the improvements of the signal to noise ratio of the magnetic detection system has been developed. The geological magnetic filter takes two sequences of magnetic fields measured from the reference sensor and the detector sensor and calculate the correlations between them in the frequency domain. Using the filter, we can remove the coherent noises in the time domain and improve the signal to noise ratio of the magnetic detection system. With the recent developments of the DSP hardware technology the geological magnetic filter can be easily implemented using the digital signal processor. We show the ability of the geological magnetic filter under various circumstances through computer simulations. Numerical simulation results show that geological magnetic filter can excellently remove the sensor misalignment effects and the regular short range local noise as well as it delete the coherent noises.

  • PDF

Development of Surface RF Coil with extremely short RF penetration depth

  • 김대흥;김은주;정은기;이삼현
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.147-147
    • /
    • 2001
  • 목적: RF 자기장이 존재하는 공간이 좁을수록 신호 대 잡음비가 증가한다. 이것을 이용하여, 기존의 표면 코일보다 RF 자기장의 공간을 좁혀서 코일 근방에서 신호 대 잡음비를 개선할 수 있는 표면 코일을 개발한다. 대상 및 방법: 기존의 표면 코일의 RF 자기장은 쌍극자(Dipole) 자기장 형태이다. 쌍극자 모드는 자기장의 세기가 1/r$^3$로 감소한다 하지만 자기장을 사중극자(Quadrupole) 형태도 발생시키면, 1/r$^{5}$ 로 감소하게 되어, 극자(pole)로부터 먼 곳에서는 자기장의 감소가 매우 급격히 일어난다. 극자 근방에서는 쌍극자와 사중극자 자기장의 세기 차이가 거의 없다. 이런 원리들을 이용하여 표면코일의 형태를 사중극자 자기장이 발생하도록 제작하여, 코일로부터 먼 곳의 신호는 코일에 검출되지 못하게 하였다. 그러므로 신호 대 잡음비에 큰 이득을 볼 수 있다.

  • PDF

Correlation between the distribution of cultural noise source and MT data (인공잡음원의 공간분포와 MT자료의 상관관계)

  • Lee Choon-Ki;Lee Heuisoon;Kwon Byung-Doo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.209-214
    • /
    • 2005
  • In the present age, the quality of MT(magnetotellurics) data highly depends on the level of industrial interference in data. We analyzed the correlation between the spatial distributions of man-made EM noise source and the characteristics of MT data. The noise source analysis shows the correlation between the noise source density and the power spectral density of measured magnetic field in the frequency band of 60 Hz harmonics. In the MT 'dead band', the strong polarization observed on the magnetic field reveals that the severe artificial noises are caused by the adjacent metropolis.

  • PDF

Prediction of Electromagnetic Noise using Spatial Modelling in Magnetotellurics (공간 모델링을 이용한 자기지전류 탐사의 전자기 잡음 예측)

  • Lee, Choon-Ki;Lee, Heui-Soon;Kwon, Byung-Doo
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.251-261
    • /
    • 2005
  • The quality of MT (magnetotellurics) data highly depends on the level of artificial noise form industrial sources. We have conducted the feasibility study of MT noise modelling using digital spatial data and spatial modelling through the comparison between the predicted and the measured MT noises. A simple noise model predicting the intensity of electromagnetic field radiated from the latent noise sources, that is, the electric facilities in the building, road and high-voltage powerline, is developed in consideration of the propagation property of electromagnetic waves. From the analysis of correlation between the predicted and the measured noise power, the correlation coefficients of electric field are higher than those of magnetic field in whole frequency band. The magnetic field component has the high correlation in the narrow band near 60 Hz only. The spatial noise modelling proposed in this study would provide some useful informations for the MT surveys in the noisy environment like urban area.

Speech/Silence Discrimination of Noisy Speech (잡음이 섞인 음성에서의 음성/무언의 구별)

  • 은종관;김현수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.36-42
    • /
    • 1984
  • 본 논문에서는 음성이 백색 Gaussian 잡음에 섞여 있을 때 음성의 유무를 구별하는 방법에 관해 서 연구되었다 제안된 방법은 음성과 무언이 입력신호의 에너지와 자기상관함수의 합에 의해서 구별된 다. 에너지의 threshold 치는 입력되는 잡음음성의 에너지와 자기상관함수를 비교함으로써 적응되도록 하였다. 이 방법을 시험하기 위해서 잡음이 없는 음성, 0, 10, 및 20 dB의 잡음이 섞인 음성을 사용하여 computer simulation을 하였다. SNR이 20dB일 때 구별의 오차율은 2%로 나왔다.

  • PDF

Analysis of Quantization Noise in Magnetic Resonance Imaging Systems (자기공명영상 시스템의 양자화잡음 분석)

  • Ahn C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.42-49
    • /
    • 2004
  • Purpose : The quantization noise in magnetic resonance imaging (MRI) systems is analyzed. The signal-to-quantization noise ratio (SQNR) in the reconstructed image is derived from the level of quantization in the signal in spatial frequency domain. Based on the derived formula, the SQNRs in various main magnetic fields with different receiver systems are evaluated. From the evaluation, the quantization noise could be a major noise source determining overall system signal-to-noise ratio (SNR) in high field MRI system. A few methods to reduce the quantization noise are suggested. Materials and methods : In Fourier imaging methods, spin density distribution is encoded by phase and frequency encoding gradients in such a way that it becomes a distribution in the spatial frequency domain. Thus the quantization noise in the spatial frequency domain is expressed in terms of the SQNR in the reconstructed image. The validity of the derived formula is confirmed by experiments and computer simulation. Results : Using the derived formula, the SQNRs in various main magnetic fields with various receiver systems are evaluated. Since the quantization noise is proportional to the signal amplitude, yet it cannot be reduced by simple signal averaging, it could be a serious problem in high field imaging. In many receiver systems employing analog-to-digital converters (ADC) of 16 bits/sample, the quantization noise could be a major noise source limiting overall system SNR, especially in a high field imaging. Conclusion : The field strength of MRI system keeps going higher for functional imaging and spectroscopy. In high field MRI system, signal amplitude becomes larger with more susceptibility effect and wider spectral separation. Since the quantization noise is proportional to the signal amplitude, if the conversion bits of the ADCs in the receiver system are not large enough, the increase of signal amplitude may not be fully utilized for the SNR enhancement due to the increase of the quantization noise. Evaluation of the SQNR for various systems using the formula shows that the quantization noise could be a major noise source limiting overall system SNR, especially in three dimensional imaging in a high field imaging. Oversampling and off-center sampling would be an alternative solution to reduce the quantization noise without replacement of the receiver system.

  • PDF

A Design Of Cross-Shpaed CMOS Hall Plate And Offset, 1/f Noise Cancelation Technique Based Hall Sensor Signal Process System (십자형 CMOS 홀 플레이트 및 오프셋, 1/f 잡음 제거 기술 기반 자기센서 신호처리시스템 설계)

  • Hur, Yong-Ki;Jung, Won-Jae;Lee, Ji-Hun;Nam, Kyu-Hyun;Yoo, Dong-Gyun;Yoon, Sang-Gu;Min, Chang-Gi;Park, Jun-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.152-159
    • /
    • 2016
  • This paper describes an offset and 1/f noise cancellation technique based hall sensor signal processor. The hall sensor outputs a hall voltage from the input magnetic field, which direction is orthogonal to hall plate. The two major elements to complete the hall sensor operation are: the one is a hall sensor to generate hall voltage from input magentic field, and the other one is a hall signal process system to cancel the offset and 1/f noise of hall signal. The proposed hall sensor splits the hall signal and unwanted signals(i.e. offset and 1/f noise) using a spinning current biasing technique and chopper stabilizer. The hall signal converted to 100 kHz and unwanted signals stay around DC frequency pass through chopper stabilizer. The unwanted signals are bloked by highpass filter which, 60 kHz cut off freqyency. Therefore only pure hall signal is enter the ADC(analog to dogital converter) for digitalize. The hall signal and unwanted signal at the output of an amplifer and highpass filter, which increase the power level of hall signal and cancel the unwanted signals are -53.9 dBm @ 100 kHz and -101.3 dBm @ 10 kHz. The ADC output of hall sensor signal process system has -5.0 dBm hall signal at 100 kHz frequency and -55.0 dBm unwanted signals at 10 kHz frequency.