• 제목/요약/키워드: 자기 유변 밸브

검색결과 9건 처리시간 0.022초

정밀 위치 제어를 위해 MR 밸브 시스템을 활용한 차량 유압 리프트에 대한 수치해석적 고찰 (A Numerical Study of New Vehicle Hydraulic Lift Activation by a Magneto-rheological Valve System for Precise Position Control)

  • 이태훈;박진하;최승복;신철수;최지영
    • 한국소음진동공학회논문집
    • /
    • 제27권1호
    • /
    • pp.28-35
    • /
    • 2017
  • 최근 기존의 유압 차량 리프트는 높이제어의 어려움으로 인해 기술개발의 한계에 직면하였다. 휠 얼라이먼트나 차량의 하중 분포에 따른 미세한 불규칙적인 변형을 보상하기 위해서는 매우 정밀한 위치 제어성이 요구되고 있다. 이 연구에서는 이러한 기존 리프트 시스템의 한계를 해결하고자 매우 정교한 압력강하를 이끌어낼 수 있는 MR 밸브 시스템을 활용하여 새로운 차량 리프트를 제안하고 이에 대한 분석을 진행한다. 우선적으로 MR 밸브의 요구되는 성능을 파악하기 위해 유압 리프트의 운동방정식을 설립하고, 요구되는 압력강하를 얻기 위해 MR 밸브를 설계한다. 또한 정밀한 위치 제어 성능을 얻기 위해 PID 제어기를 설립하고, 시뮬레이션을 통해 제안된 시스템의 제어성을 검증한다.

MR 밸브의 전자기적 설계와 성능 평가 (Electromagnetic Design and Performance Evaluation of an MR valve)

  • 김기한;남윤주;박명관
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.968-973
    • /
    • 2007
  • This paper presents an electromagnetic design for the magneto-rheological fluid valve. The MR valve can control high-level fluid power without moving parts, due to the apparent viscosity controllability of the MR fluid in magnetic fields. In order to improve the static characteristic of the MR valve, the length of the flux path is decreased by removing the unnecessary bulk of the yoke. Then, in order to improve the dynamic and hysteretic characteristics, the magnetic reluctance of the ferromagnetic material is increased by minimizing the cross sectional area through which the flux passes. Two MR valves, one is a conventional type valve and the other is the proposed one, were fabricated and performance evaluation is experimentally achieved through the comparison study using by-pass damper system.

  • PDF

영구자석을 이용한 밸브모드 MR 감쇠기 설계에 관한 연구 (A Study on the Design of Valve Mode MR Damper using Permanent Magnet)

  • 김정훈;오준호
    • 한국정밀공학회지
    • /
    • 제17권10호
    • /
    • pp.69-76
    • /
    • 2000
  • Lots of semi-active control devices have been developed in recent years because they have the best features of passive and active system. Especially, controllable magneto-rheological(MR) fluid devices have received significant attention in these area of research. The MR fluid is the material that reversibly changes from a free-flowing, linear viscous fluid to a semisolid with a controllable yield strength in milliseconds when exposed to a magnetic field. If the magnetic field is induced by moving a permanent magnet instead of applying current to a solenoid, it is possible to design a MR damper consuming low power because the power consumption is reduced at steady state. This paper proposes valve mode MR damper using permanent magnetic circuit that has wide range of operation with low power consumption, a design parameter is adopted. The magnetic circuit, material of choke and choke type are selected experimentally with the design parameter. The behaviors of the damper are examined and torque tracking control using PID feedback controller is performed for step, ramp and sinusoidal trajectiories.

  • PDF

MR 밸브의 전자기적 설계와 성능평가 (Electromagnetic Design and Performance Evaluation of an MR Valve)

  • 김기한;남윤주;박명관
    • 대한기계학회논문집A
    • /
    • 제32권3호
    • /
    • pp.240-249
    • /
    • 2008
  • This paper presents an electromagnetic design method for magneto-rheological (MR) valves. Since the apparent viscosity of MR fluids is adjusted by applying magnetic fields, the MR valves can control high-level fluid power without any mechanical moving parts. In order to improve the performances of the MR valve, it is important that the magnetic field is effectively supplied to the MR fluid. For the purpose, the magnetic circuit composed with the yoke for forming magnetic flux path, the electromagnetic coil and the MR fluid should be well designed. In order to improve the static characteristic of the MR valve, the length of the magnetic flux path is decreased by removing the unnecessary bulk of the yoke. Also, in order to improve its dynamic and hysteretic characteristics, the magnetic reluctance of the magnetic circuit should be increased by minimizing the cross-sectional area of the yoke through which the magnetic flux passes. After two MR valves, one is a conventional type valve and the other is the proposed one, are designed and fabricated, their performances are evaluated experimentally.

마찰력을 고려한 군용 MR 현수 장치의 설계 및 제어 (Design and Control of MR Military Suspension System Considering Friction Force)

  • 하성훈;최승복;이은준;강필순
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.480-485
    • /
    • 2009
  • This paper presents dynamic modeling and control analysis of a military vehicle suspension featuring MR valve structure. Firstly, the dynamic model of the suspension system which is included gas spring, MR valve and gas chamber is established with respect to the disturbance. Secondly, the friction model of the suspension system is derived by considering experiment result of the MR suspension system. And then, response characteristics of the damping force with respect to the magnetic field and friction force with the proposed friction model are provided to show the feasibility of practical application. In addition, control performance of the proposed MR suspension system is evaluated with quarter vehicle.

  • PDF

마찰력을 고려한 군용 MR 현수 장치의 설계 및 제어 (Design and Control of MR Military Suspension System Considering Friction Force)

  • 하성훈;최승복;이은준;강필순
    • 한국소음진동공학회논문집
    • /
    • 제20권1호
    • /
    • pp.58-65
    • /
    • 2010
  • This paper presents dynamic modeling and control analysis of a military vehicle suspension featuring MR valve structure. Firstly, the dynamic model of the suspension system which is included gas spring, MR valve and gas chamber is established with respect to the disturbance. Secondly, the friction model of the suspension system is derived by considering experiment result of the MR suspension system. And then, response characteristics of the damping force with respect to the magnetic field and friction force with the proposed friction model are provided to show the feasibility of practical application. In addition, control performance of the proposed MR suspension system is evaluated with quarter vehicle.

접시 스프링과 MR Valve를 적용한 군용차량 현수장치의 모델링 (Modeling of Military Vehicle Suspension System Featuring Disc Spring and MR Valve)

  • 하성훈;최승복;이은준;강필순
    • 한국소음진동공학회논문집
    • /
    • 제19권10호
    • /
    • pp.979-986
    • /
    • 2009
  • This paper presents a dynamic modeling of a military vehicle suspension featuring disc spring and MR valve. Firstly, the dynamic model of the disc spring is established with respect to the load and pressure. The nonlinear behavior of the spring is incorporated with the model. Secondly, the dynamic model of the MR valve is derived by considering the pressure drop due to the viscosity and yield stress of MR fluid. The governing characteristics of the proposed suspension system are then investigated by presenting the field-dependent pressure drop of the MR valve and spring force of the gas spring.

구조물 진동제어용 밸브 모드형 자기유변댐퍼의 최적설계 방법 (An Optimal Design of Valve-Mode Magnetorheological fluid dampers for Structural Control)

  • 문석준;허영철;정형조
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.393-400
    • /
    • 2006
  • One of the most promising semi-active devices proposed for structural control is magnetorheological fluid (MR) dampers. While many researches are making too much of application to structural control, few of papers are considering how to design the MR dampers having good performance. In this paper, the sub-optimal design procedure for MR dampers is presented. This paper shows that an MR damper having the capacity of about 5,000 N is designed according to proposed procedure, as an exmple.

  • PDF

영구자석을 이용한 저전력형 MR 감쇠기의 설계 (The design of low-power MR damper using permanent magnet)

  • 김정훈;오준호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.433-439
    • /
    • 2000
  • Lots of semi-active control devices have been developed in recent years because they have the best features of passive and active system. Especially, controllable magneto-rheological(MR) fluid devices have received significant attention in these area of research. The MR fluid is the material that reversibly changes from a free-flowing, linear viscous fluid to a semisolid with a controllable yield strength in milliseconds when exposed to a magnetic field. If the magnetic field is induced by moving a permanent magnet instead of applying current to a solenoid, it is possible to design a MR damper consuming low power because the power consumption is reduced at steady state. This paper proposes valve mode MR damper using permanent magnetic circuit that has wide range of operation with low power consumption and small size. To design a MR damper that has a large maximum dissipating torque and a low damping coefficient, a design parameter is adopted. The magnetic circuit, material of choke and choke type are selected experimentally with the design parameter. The behaviors of the damper are examined and torque tracking control using PID feedback controller is performed for step, ramp and sinusoidal trajectories.

  • PDF