• Title/Summary/Keyword: 자기 베어링 내장 전동기

Search Result 4, Processing Time 0.02 seconds

Development of Lorentz Force Type Integrated Motor-Bearing System in Dual Rotor Disk Configuration (두 장의 원판형 회전자를 갖는 로렌츠형 자기 베어링 내장 전동기의 개발)

  • Park, Sung-Ho;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.935-940
    • /
    • 2005
  • In this paper, dual rotor disk configuration with a coreless stator is proposed for the Lorentz force type integrated motor bearing system. An experimental compensation for the effects of high order harmonics is performed using the digital controller of the experimental setup. The runout profile and rotor unbalance are also identified by the extended influence coefficient method. The experimental results confirm that this compensation method effectively attenuates the rotor vibration all over the operating range of rotational speed.

  • PDF

Development of Lorentz Force Type Integrated Motor-bearing System in Dual Rotor Disk Configuration (두 장의 원판형 회전자를 갖는 로렌츠형 자기 베어링 내장 전동기의 개발)

  • Lee, Chong-Won;Park, Sung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1045-1052
    • /
    • 2005
  • Tn this paper. dual rotor disk configuration with a coreless stator is proposed for the Lorentz force type integrated motor hearing system. An experimental compensation for the effects of high order harmonics is performed using the digital controller of the experimental setup. The runout profile and rotor unbalance are also identified by the extended influence coefficient method. The experimental results confirm that this compensation scheme effectively attenuates the rotor vibration all over the operating range of rotational speed.

Angular Self-Sensing Algorithm of Lorentz Force Type Integrated Motor-Bearing System (로렌츠형 자기베어링 내장 전동기의 회전각 추정기)

  • Jeon, Han-Wook;Park, Sung-Ho;Park, Young-Jin;Lee, Chong-Won
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.852-857
    • /
    • 2004
  • In this paper, an angular self-sensing algorithm is proposed and implemented to a Lorentz force type integrated motor-bearing system. It is based on the principle that the flux linkages of stator windings, calculated from the voltage and torque control current, are the functions of the rotor angle. The tracking angular position error is proven to vanish using the Lyapunov stability method, and the experimental results show that the initial error decays within about 5 seconds. It is found that the resolution of the algorithm remains about 1º over the speed range of 100 to 1000 rpm.

  • PDF

Implementation of Levitation Controller for Toroidally-Wound Self-Bearing BLDC Motor Using Continuously Invertible Force Model (연속적 역변환이 가능한 힘 모델을 이용한 환형권선 셀프베어링 BLDC 모터의 부상 제어기 구현)

  • Choi, Won-Yeong;Choi, Jung-Kyu;Noh, Myounggyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.899-903
    • /
    • 2013
  • A self-bearing is an electric machine that achieves both rotational actuation and magnetic levitation using a single magnetic structure. To be able to stably levitate the rotor in a self-bearing, one needs to have an inverse of the force-current model. However, the force-current model in a self-bearing motor is typically not square. Furthermore, the elements of the matrix vary with respect to the rotational angle, resulting in singularities of the pseudo-inverse at various angles. In this paper, we propose a new force-current model that eliminates the singularities by adding a constraint in coil currents. This constraint eliminates the flux density in the stator core so that the saturation problem in the previous study is avoided. By implementing this force-current model, we are able to implement a levitation controller for a toroidally-wound self-bearing BLDC motor. The model inversion and levitation are validated experimentally.