• Title/Summary/Keyword: 자기 동조 제어기

Search Result 122, Processing Time 0.027 seconds

Pole-zero placement self-tuning controller minimizing tracking error (추종 오차를 최소화하는 극-영점 배치 자기 동조 제어기)

  • 한규정;이종용;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.179-181
    • /
    • 1987
  • In this paper, a self-tuning controller design is proposed by using pole-zero placement method and considering a system time delay. To got better tracking for the generalized self-tuning controller, pole placement method for the closed loop system and zero placement method for the error transfer function are Introduced. The proposed method shows better efficiency than pole placement method for minimizing tracking error. Simulation gives good results in tie reference signal tracking.

  • PDF

A Study on the Control of Micro Drilling by the GA-based Fuzzy Interence (GA-based Fuzzy 추론에 의한 미세드릴가공의 제어에 관한 연구)

  • 백인환;정우섭;권혁준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.64-68
    • /
    • 1995
  • 미세드릴가공은 최근의 공업제품의 소형 경량화 추세로 인해 수요가 급증하고 있으나 가공시에 있어서 많은 난 점이 존재 하기 때문에 강도 높은 가공기와 숙련된 가공전문가를 필요로 한다. 본 연구에서는 미세드릴가공을 수행하기 위해 우선 절삭상태 검출방법으로써 실용적이고 가공상황에 간섭을 일으키지 않는 주축용 모터의 전류 값을 이용하며 제어기 설계를 위해 퍼지추론과 유전알고리즘 이론을 도입한다. 이러한 지능형 가공방법을 미세 드릴가공에 구현하기 위해서 오프라인으로 안정한 가공조건을 초기화한 다음 퍼지제어기를 이용하여 일정한 절삭력을 유지할 수 있도록 실시간으로 이송속도를 제어하며 가공상황 변동에 따른 적절한 퍼지규칙을 자기 동조하는 최적화 알고리즘을 제안한 후 실제가공을 통하여 미세드릴가공의 특성과 제어기의 성능을 평가한다.

  • PDF

Robust Control of Robot Manipulator using Self-Tuning Adaptive Control (자기동조 적응제어기법에 의한 로봇 매니퓰레이터의 강인제어)

  • 뱃길호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.150-155
    • /
    • 1996
  • This paper presents a new approach to the design of self-tuning adaptive control system that is robust to the changing dynamic configuration as well as to the load variation factors using digital signal processors for robot manipulators. TMS3200C50 is used in implementing real-time adaptive control algorithms provide advanced performance for robot manipulator. In this paper an adaptive control scheme is proposed in order to design the pole-placement self-tuning controller which can reject the offset due to any load disturbance without a detailed description of robot dynamics. parameters of discrete-time difference model are estimated by the recursive least-square identification algorithm and controller parameters are detemined by the pole-placement method. Performance of self-tuning adaptive controller is illusrated by the simulation and experiment for a SCARA robot.

  • PDF

Design of auto-tuning controller for Dynamic Systems using neural networks (신경회로망을 이용한 동적 시스템의 자기동조 제어기 설계)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.147-149
    • /
    • 2007
  • "Dynamic Neural Unit"(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF

Robustness of Continuous-time Self-Tuning Control (연속시간 자기동조 제어기의 강인성)

  • Kim, Jong-Moon;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.360-364
    • /
    • 1989
  • In this paper, the robustness of self tuning controller for continuous time system is investigated. The continuous time least square algorithm is used in estimating parameters. The main control algorithm is the pole-zero placement control. The effects of unmodeled dynamics on continuous time approach and discrete-time approach are compared.

  • PDF

Design of Mobile Robot Auto-Tuning Controller Using Nueal Networks (신경망을 이용한 이동로봇의 자기동조 제어기 설계)

  • Kim, Dong-Wook;Kwak, Il-Doo;Lee, Yang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2501-2503
    • /
    • 2004
  • In this paper, we propose an auto-tuning control algorithm for a mobile robot. This controller consists of a three layer neural networks and a PID controller. In order to compensate for uncertainties from unknown dynamics and ignored dynamic effects such as slip conditions, neural network based position schemes are proposed. The results of simulations show the validity of proposed method. This controller learns quickly the model and has good position control performance.

  • PDF

The Robustness of Continuous Implicit Self Tuning Controller (연속치 내재형 자기동조 제어기의 강인성)

  • Lee, Bong-Kuk;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.496-499
    • /
    • 1990
  • In this paper, the robustness of implict self tunning controller on the continuous time system is investigated. Continuous time exponentially weighted least square algorithm is used for estimating the system parameters. The pole-zero placement method is adapted for the control algorithm. On considering the control weighting factor and realizability filter the effects of unmodeled dynamics of the plant are examined by the simulation.

  • PDF

GPC 기법을 이용한 자기동조 PID 제어기 설계

  • 윤강섭;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.326-329
    • /
    • 1995
  • PID control has been widely used for real control system Further, there are muchreasearches on control schemes of tuning PID gains. However, there is no results for discrete-time systems with unknown time-dealy and unknown system parameters. On the other hand, Generalized predictive control has been reported as a useful self-tuning control technique for systems with unknown time-delay. So, in this study, based on minimization of a GPC criterion, we present a self-tuning PID control algorithm for unknown parameters and unknown tiem-delay system. A numerical simulation was presented to illuatrate the effectiveness of this method.

  • PDF

Pole-Zero Assignment Self-Tuning Controller Using Neural Network (신경회로망 기법을 이용한 극-영점 배치 자기 동조 제어기)

  • 구영모;이윤섭;장석호;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.2
    • /
    • pp.183-191
    • /
    • 1991
  • This paper develops a pole-zero assignment self-tuning regulator utilizing the method of a neural network in the plant parameter estimation. An approach to parameter estimation of the plant with a Hopfield neural network model is proposed, and the control characteristics of the plant are evaluated by means of a simulation for a second-order linear time invariant plant. The results obtained with those of Exponentially Weighted Recursive Least Squares(EWRLS) method are also shown.

Development on Fuzzy Controller for DC Series Wound Motor of Tensile System (초정밀 인장기용 직류 직권모터의 퍼지제어기 개발)

  • Bae, Jong-Il;Jung, Dong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.73-81
    • /
    • 2003
  • DC series wound motor is commonly used for the industrial vehicles. Although it has good operating torque, heavy variations of parameters and nonlinear properties on friction and loads make it difficult to satisfy desired performance using conventional controllers. To solve this problem, fuzzy controller is proposed in this paper. The fuzzy controller has been designed based on the fuzziness of variables, it retains robustness even with nonlinearity.

  • PDF