• Title/Summary/Keyword: 자기 공진

Search Result 235, Processing Time 0.028 seconds

A Study of High-Quality Factor Solenoid-Type RF Chip Inductor Utilizing Amorphous $Al_2O_3$ Core Material (비정질 $Al_2O_3$ 코아 재료를 이용한 Solenoid 형태의 고품질 RF chip 인덕터에 관한 연구)

  • Lee, Jae-Wook;Jung, Young-Chang;Yun, Eui-Jung;Hong, Chol-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.34-42
    • /
    • 2000
  • Recently, there is a growing need to develope small-size RF chip inductors operating to GHz to realize high-performance, micro-fabricated wireless communication products. For the development of high-performance RF chip inductors, however, the ferrite-based chip inductors can not be used above 300MHz due to the limitation of the permeability of this material. In this work, small-size, high-performance RF chip inductors utilizing amorphous $Al_2O_3$ core material were investigated. Copper (Cu) with 40${\mu}m$ diameter was used as the coils and the chip inductor size fabricated in this work is $2.1mm{\times}1.5mm{\times}1.0mm$. The external current source was applied after bonding Cu coil leads to gold pads electro-plated on the bottom edges of a core material. The composition of core materials was measured using a EDX. High frequency characteristics of the inductance (L), quality factor (Q), and impedance (Z) of developed inductors were measured using an RF Impedance/Material Analyzer (HP4291B with HP16193A test fixture). The developed inductors have the self-resonant frequency (SRF) of 1 to 3.5 GHz and exhibit L of 22 to 150 nH. The L of the inductors decreases with increasing the SRF. The Z of the inductors has the maximum value at the SRF and the inductors have the quality factor of 70 to 97 in the frequency range of 500 MHz to 1.5 GHz.

  • PDF

Axial magnetic gear with a closed magnetic path (자기 폐회로를 갖는 축형 마그네틱 기어)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.726-733
    • /
    • 2017
  • A magnetic shutter gear is a device that transfers mechanical power by synchronizing the magnetic field between permanent magnet layers facing circumferentially through a harmonic modulator. However, magnetic gears uses many rare-earth permanent magnets to guarantee comparable torque density to that of mechanical reducer. Hence, we propose a novel axial magnetic gear with a dramatically reduced number of permanent magnets and a closed magnetic path. The torque of the system was compared to that of an existing shutter gear through a harmonic analysis of the air-gap magnetic field. The modulator thickness and open ratio were considered as the primary design parameters, and the cogging effect was analyzed for variation of the reduction ratio. A dynamic model between the high-speed side and low-speed side was derived, and position control was performed for a constructed hardware implementation.

Design and Implementation of a 100 W Receiver for Wireless Power Transfer Using Coupled Magnetic Resonance (자기공명 무선전력전송용 100 W급 수신기 설계 및 제작)

  • Kim, Seong-Min;Cho, In-Kui;Choi, Hyun-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.84-87
    • /
    • 2016
  • In this paper, a receiver for wireless power transfer is proposed. The receiver consists of a 100 W rectifier in 1.8 MHz frequency band, and a constant current charger. In particular, two kinds of protection circuits are installed in the rectifier. They are a over-voltage protection circuit which block the input voltages greater than 30 V and a active-dummy load which maintains the receiver input impedance by automatically consuming the remaining input power. The constant current charger is designed to charge the battery with a charging current of up to 1 A. A wireless charging system is fabricated using the proposed receiver. The system is composed of a 130 W transmitter, two magnetic resonator, and proposed receiver for charging a 48 V Li-Ion battery using the coupled magnetic resonance method. By the measurement result, the system efficiency is about 54 %.

Electric Field Effect on Numerical Dosimetry for Wireless Power Transfer System (무선전력전송의 조사량 평가 시 전기장 영향)

  • Park, Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.499-505
    • /
    • 2015
  • The coupling effect of electric fields incident on the biological object is investigated in regards to dosimetry for a wireless power transfer(WPT) system using electromagnetic resonance phenomenon. The internal electric fields induced a biological sphere model exposed to a magnetic dipole are calculated with the finite-difference time-domain(FDTD) method considering both incident electric and magnetic fields, the impedance method considering only incident magnetic fields, and theoretical analysis. The results represent that the electric coupling effect on a biological object nearby the WPT system should be considered to conduct exact dosimetry.

Thermal and Geometrical Effect on the Motor Performance of Composite Squirrel Cage Rotor (복합재료 농형 회전자의 열적, 기하학적 특성이 모터 성능에 미치는 효과)

  • 장승환;이대길
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.77-89
    • /
    • 2001
  • Since the critical whirling vibration frequency of high speed built-in type motor spindle systems is dependent on the rotor mass of the built-in motor and the spindle specific bending modulus, the rotor and the shaft were designed using magnetic powder containing epoxy and high modulus carbon fiber epoxy composite, respectively. In order to increase the amount of the magnetic flux of the composite squirrel cage rotor of an AC induction motor, a steel core was inserted into the composite rotor. From the magnetic analysis, the optimal configurations of steel core and conductor bars for the dynamic characteristics of the rotor system were determined and proposed. The temperature dependence of composite squirrel cage rotor materials was investigated by various experiments such as TMA, DMA and VSM.

  • PDF

Magnetic saturation property of magnetic core materials as a function of permanent magnet (영구자석에 따른 자심 재료의 자기 포화 특성 변화)

  • Kim, Hyun-Sik;Huh, Jeong-Seob;An, Yong-Woon;Kim, Jong-Ryung;Oh, Young-Woo;Park, Hye-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.165-168
    • /
    • 2004
  • Bias magnet에 의한 평면자심재료의 전자기적 특성 변화를 분석하기 위해 E형 코어 사이에서 영구자석의 유무 및 위치 등의 gap 형성 조건에 따른 측성변화를 관찰하였다. 영구자석과 air Gap이 평면코어에 삽입 될 경우 높은 포화 전류값을 가지는데 이는 자기저항이 자성체에 비해서 상당히 높은 에어 갭의 존재로 인해 외부 인가 전류가 증가되어도 자성체에서 생성되는 자속이 대부분 에어갭 내에서 소비되기 때문이다. 그리고 Bias magnet 역할을 하는 영구자석을 자심재료에 가하게 되면 Bias에 의한 역자장과 자성체에서 발생하는 자장이 서로 상쇄되어 포화 전류는 증가하게 된다. 또한, Bias magnet로 영구자석을 삽입하연 공진주파수는 고주파 대역으로 이동하므로 대전류 고주파 특성이 요구되는 응용장치에 적용가능하다.

  • PDF

Circuit Model Based Analysis of a Wireless Energy Transfer System via Coupled Magnetic Resonances (결합된 자기공명을 통한 무선에너지 전력 전송 시스템의 회로 해석)

  • Cheon, Sang-Hoon;Kim, Yong-Hae;Lee, Myung-Lae;Kang, Seung-Youl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.137-144
    • /
    • 2011
  • A Simple equivalent circuit model is developed for a wireless energy transfer system via coupled magnetic resonances and a practical design method is also provided. Node equations for the resonance system are built with the method, expanding on the equations for a transformer, and the optimum distances of coils in the system are derived analytically for optimum coupling coefficients for high transfer efficiency. In order to calculate the frequency characteristics for a lossy system, the equivalent model is established at an electric design automation tool. The model parameters of the actual system are extracted and the modeling results are compared with measurements. Through the developed model, it is seen that the system can transfer power over a mid-range of a few meters and impedance matching is important to achieve high efficiency. This developed model can be used for a design and prediction on the similar systems such as increasing the number of receiving coils and receiving modules, etc.

A New Type Speaker Utilizing a Magneto-rheological Fluid Diaphragm (자기유변유체 다이어프램을 이용한 새로운 타입의 스피커)

  • Park, Jhin Ha;Yoon, Ji Young;Kim, Seon Hye;Lee, Tae Hoon;Lee, Soo Hyuk;Choi, Seung Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.182-188
    • /
    • 2017
  • In this work, a new type speaker which features various resonant frequencies is proposed utilizing a magneto-rheological (MR) fluid and its performance is evaluated in terms of the change of the field-dependent sound pressure level. In order to achieve this goal, a whole concept of the speaker system is firstly discussed and subsequently a controllable diaphragm is made using MR fluid whose rheological properties such as viscosity are controllable by the magnitude of magnetic field. Then, the proposed speaker system consisting of the inner structure and the squeeze mode type of MR diaphragm is established in an anechoic room The effectiveness of the proposed speaker system is experimentally evaluated at two different conditions; with and without the magnetic field. It is shown from experimental tests that the sound pressure level at different sound source can be controlled which is not able to achieve using one conventional speaker system.

Implementation of 1.7MHz, 25W Wireless Power Transmission(WPT) System using Coupled Magnetic Resonance (1.7MHz, 25W급 자기공명 무선전력 전송 시스템 구현)

  • Kim, Seong-Min;Cho, In-Gui;Moon, Jung-Ick
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.317-323
    • /
    • 2013
  • In this paper, 25W wireless power transmission(WPT) system using the coupled magnetic resonance is presented. The WPT system consists of a 100W class-F power transmitter, 1.7MHz magnetic resonators and a 40W full-bridge receiver using diodes. Especially, the transmit power control function using the 400MHz FSK communication between the transmitter and the receiver is adopted in the proposed system for the stable power transmission. Using the system and the power control function, the WPT system can be adopted in the various electronic devices and the commercialization of WPT system can be moved forward.

Empirical Characterization of an Air-cored Induction Coil Sensor using Constructional Parameters (Air-cored induction 코일 센서의 실험 기반 고주파 특성 모델링에 대한 연구)

  • Lim, Han-Sang;Kim, In-Joo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.1-7
    • /
    • 2010
  • This paper presents empirical equations indicating the high frequency performance characteristics of air-cored induction coil sensors with their constructional parameters. An air-cored induction coil sensor is widely used due to good linearity at low frequency ranges but the sensor has weakness of relatively low sensitivity to the magnetic field. At high frequency ranges, the sensitivity can be dramatically increased, largely depending on the frequency of the injected field, and this property can be a great asset to some electromagnetic inspections, since they utilize the interrogating current with a fixed frequency. The application of this property of the coil sensor requires the estimation of its high frequency performance. We made experiments on the frequency responses of the coil sensors under diverse constructional conditions and, on the basis of the experimental results, the high frequency performance, such as the resonant frequency and the sensitivity at the frequency, was estimated, as a function of the constructional parameters of the coil sensor. The good agreements between experimental and estimated data were reported.