• Title/Summary/Keyword: 자기 경화

Search Result 117, Processing Time 0.026 seconds

Mechanical and Electrical Properties of Self-sensing Grout Material with a High-Volume Ultrafine Fly Ash Replacement (초고분말 플라이 애시를 다량 치환한 자기감지형 그라우트재의 역학적 및 전기적 특성)

  • Lee, Gun-Cheol;Kim, Young-Min;Im, Geon-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.215-226
    • /
    • 2024
  • This study presents an experimental investigation into the performance of self-sensing grout formulated with a high volume of ultra-fine fly ash(UHFA). To explore the potential benefits of alternative cementitious materials, the research examined the effect of substituting UHFA with equal parts of blast furnace slag(BFS) fine powder. Both UHFA and BFS are byproducts generated in significant quantities by industrial processes. The evaluation focused on the fresh properties of the grout, including its flow characteristics, as well as the hardened properties such as compressive strength, dimensional stability(length change rate), and electrical properties. The experimental results demonstrated that incorporating UHFA resulted in a substantial reduction in the plastic viscosity of the grout, translating to improved flowability. Additionally, the compressive strength of the UHFA-modified grout surpassed that of the reference grout(without UHFA substitution) at all curing ages investigated. Interestingly, the electrical characteristics, as indicated by the relationships between FCR-stress and FCR-strain, exhibited similar trends for both grout mixtures.

A Study on the breakdown reduction of porcelain insulators (자기제 애자의 절연파괴 감소대책 연구)

  • Song, I.K.;Park, K.P.;Kim, Y.L.;Kim, K.W.;Kwak, H.R.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1042-1044
    • /
    • 1995
  • This paper provides the results and analyses of investigations into porcelain suspension insulators failures on the KEPCO system. The high failure rate of suspension insulators on distribution lines has been attributed to the volume expansion of the cement, the insulation puncture breakdown of the porcelain and the power arc failure. The utility must use only the good insulators and at least reduce the insulator failure rate. So, this paper recommends that the utility make test criteria(cement expansion test, steep front-of-wave flashover voltage test and power arc test. etc) on the suspension insulators.

  • PDF

Coarctation of the Aorta Associated with Chronic Thoracic Aortic Aneurysm -A case report - (만성 흉부 대동맥류를 동반한 대동맥 축착증 - 1예 보고 -)

  • 구자홍;김경화;김민호;김공수
    • Journal of Chest Surgery
    • /
    • v.36 no.9
    • /
    • pp.691-694
    • /
    • 2003
  • A 49-year-old woman had thoracic back pain for several years. Chest CT scan and MRI angiography revealed descending thoracic aortic aneurysm with a maximum diameter of 69 mm. Thoracic aortography showed not only the aortic aneurysm, but also coarctation of descending thoracic aorta at the level of aortic hiatus of the diaphragm. Intercostal artery arising Adamkiewicz artery was found in descending thoracic aortic aneurysm just above the coarctation, The aneurysm with coarctation of the aorta was successfully repaired with prosthetic graft replacement under left atrio-femoral bypass.

The Characteristics of Ductile Cast Iron Heat-treated by $CO_2$Laser (구상흑연주철의 $CO_2$레이저 표면경화 특성)

  • 정원기;전병철;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.998-1002
    • /
    • 1997
  • This study has been performed to predict beam absorption with analysis of temperature field by using a FEM in co /sab 2/ laser hardening and to invesrigate into some effects of power density and travel speed of laser beam on the microstructure and hardness of ductile cast iron treated by laser surface hardening technique. Optical micrograph has shown that large martensite and small amount of retained austenite appear in inside hardened zone. Hardness measurement has revealed that the range of maximum hardness value is Hv=415 .+-. 10. The power density increases and the travel speed decreases, the depth of hardened zone increases due to increase of input power density.

  • PDF

고지혈증의 원인과 치료 - 고지혈증과 운동

  • Kim, Yeong-Ju
    • The Monthly Diabetes
    • /
    • s.285
    • /
    • pp.35-40
    • /
    • 2013
  • 최근 몸짱에 대한 열풍은 연예인들이 몇 달간 식이요법과 유산소 운동 그리고 웨이트 트레이닝을 통한 자기관리로 멋진 근육을 드러내 보이면서 많은 이들에게 호감을 갖게 한다. 운동의 효과는 전세계적으로 하루에도 수십편의 연구논문들이 쏟아져 나오고 있다. 현재까지 죽상동맥경화로 인한 심혈관 질환과 뇌혈관질환의 예방과 치료에 있어 운동은 절대적인 역할을 하고 있다. 뇌심혈관질환의 위험요인 중 흡연이나, 음주, 비만, 당뇨, 고혈압 외에 증상이 거의 없어 고혈압과 더불어 "침묵의 살인자"라고 불리우는 고지혈증은 건강검진을 받아보다가 우연하게 발견되기도 한다. 일반인들도 뇌심혈관질환에 위험요인이 위 항목들인 것을 대부분 알고 있지만 운동을 하지 않는 좌업식 생활을 하는 비활동인이 뇌심혈관 질환의 위험요인으로 포함된 것은 오래된 일이 아니다. 이번을 기회로 운동의 중요성을 언급하면서 고지혈증과 운동을 중심으로 기술하고자 한다.

  • PDF

A Study on the Grinding Characteristics of the Carbon Fiber Epoxy Composite Materials with the Vitrified Bonded Wheel (탄소섬유 에폭시 복합재료 연삭숫돌 선정에 관한 연구)

  • 한흥삼
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.44-49
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites frequently requires cutting or grinding due to the dimensional inaccuracy for precision machine elements. The surface roughness and cutting force were also measured to investigate the surface grinding characteristics of the composites using the vitrified bonded wheel (WA, GC). The experiments were performed dry grinding conditions with respect to cutting speed, feed speed, depth of cut of the stacking sequence $[O]_{nT.}$ From the experimental investigation, the optimal conditions both the vitrified bonded wheel WA and GC for the surface grinding are suggested.

  • PDF

An Experimental Study on Field Application of Self-Compacting Concrete Using Recycled Fine Aggregate (순환잔골재를 혼입한 자기충전 콘크리트의 현장적용을 위한 실험적 연구)

  • Ryou, Jae Suk;Song, Il Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.193-203
    • /
    • 2011
  • The purpose of this study, looking to which the recycled fine aggregates from waste concrete have a lot of problems as a material for structure purpose, is applying the recycled fine aggregate to Self-Compacting Concrete(In the reminder of this paper, it often referred to as SCC) by using the characteristic which the powder containing the recycled fine aggregates can increase strength and liquidity. In this study, that is, the recycled fine aggregate powder is appropriate for developing high strength(over 40 MPa) and liquidity(JSCE 2 grade), the characteristic of the SCC and it was increased the ratio of mixing the recycled fine aggregates emerging from waste concrete and the normal fine aggregates by 25%, making differential in total 5 levels and applied to SCC. After all, this study was reviewed the physical properties of the fresh concrete, analyzed the mechanical properties and durability of the hardening concrete and tried to ensure the possibility of utilizing the recycled fine aggregates as a material for SCC. As a result, this study reached a conclusion that among the 5-level replacement ratios of the physical, mechanical analysis and the durability characteristics, the normal fine aggregates could be applied up to a replacement ratio of 50% more than the recycled fine aggregates and resulted in a deterioration in performance the replacement ratio larger than 50%. It is judged that the applicability of the real structures should be followed up in order to check the possibility of applying the recycled fine aggregates to real life.

A Study on Hardening Characteristics of High Carbon Steel by using High Power Diode Laser (고출력 다이오드 레이저를 이용한 고탄소강의 경화특성에 관한 연구)

  • Hwang, Hyun-Tae;Kim, Jong-Do;So, Sang-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.600-607
    • /
    • 2011
  • Recently, high carbon steel has become essential not only for shipbuilding parts, but also mass production. Its surface has been treated by carburizing, nitriding and induction hardening, but these existing treatments cause considerable deformation and increase the expense of postprocessing after treatment; furthermore, these treatments cannot be easily applied to parts that requiring the hardening of only a certain section. This is because the treatment cannot heat the material homogeneously, nor can it heat all of it. Laser surface treatment was developed to overcome these disadvantages, and when the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate, microstructural changes and hardness characteristics of two parts (the surface treatment part, and parental material) are observed with the change of laser beam speed and surface temperature.

Analysis of the Strain Rate Effect in Electro-Magnetic Forming (전자기 성형에서의 변형률 속도 효과 해석)

  • 곽신웅;신효철;이종수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1043-1058
    • /
    • 1990
  • The Strain rate effect in electro-magnetic forming, which is one of the high velocity forming methods, is studied by the finite element method in this paper. The forming process is simplified by neglecting the coupling between magnetic field and work-piece deformation, and the impulsive magnetic pressure is regarded as inner pressure load. A rate-dependent elasto-plastic material model, of which tangential modulus depends of effective strain rate, is proposed. The model is shown to well describe the transient increase of yield stresses, the decreases of the final displacement and yield stress, the decrease of the difference in the distribution of deformation along the axial direction, and the change of deformation mechanism due to strain rate effect. As a result, displacement, final deformed shape, radial velocity, deformation energy, and the changes of effective stress, effective strain and effective strain rate through plastic working are given. Based on the results, the effectiveness of this model and the strain rate effect of the deformation process of the work-piece are discussed.

Design and Constructibility of an Engineered Cementitious Composite Produced with Cement-based Mortar Matrix and Synthetic Fibers (시멘트계 모르타르 매트릭스를 활용한 섬유복합재료 ECC(Engineered Cementitious Composite)의 설계와 시공 성능)

  • Kim, Yun-Yong
    • Composites Research
    • /
    • v.20 no.2
    • /
    • pp.21-26
    • /
    • 2007
  • This paper summarizes the design procedure and constructibility of an ECC (Engineered Cementitious Composite), which is a synthetic fiber-reinforced composite produced with the Portland cement-based mortar matrix. This study employs a stepwise method to develop useful ECC in construction field, which possesses different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or spray processing). To control the rheological properties of the composite, the aggregates and reinforcing fibers were initially selected based on micromechanical analysis and steady-state cracking theory. The stability and consequent viscosity of the suspensions were then mediated by optimizing the dosage of the chemical and mineral admixtures. The rheological properties altered through this approach were revealed to be effective in obtaining ECC-hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension, allowing the readily achievement of the desired function of the fresh ECC.