• Title/Summary/Keyword: 자기조직화 신경망

Search Result 76, Processing Time 0.028 seconds

Prediction of Cutting Force using Neural Network and Design of Experiments (신경망과 실험계획법을 이용한 절삭력 예측)

  • 이영문;최봉환;송태성;김선일;이동식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1032-1035
    • /
    • 1997
  • The purpose of this paper is to reduce the number of cutting tests and to predict the main cutting force and the specific cutting energy. By using the SOFM neural network, the most suitable cutting test conditions has been found. As a result, the number of cutting tests has been reduced to one-third. And by using MLP neural network and regression analysis, the main cutting force and specific cutting energy has been predicted. Predicted values of main cutting force and specific cutting energy are well concide with the measured ones.

  • PDF

A New Structure of Self-Organizing Neural Networks for the Euclidean Traveling Salesman Problem (유클리디안 외판원 문제를 위한 자기조직화 신경망의 새로운 구조)

  • 이석기;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.61
    • /
    • pp.127-135
    • /
    • 2000
  • This paper provides a new method of initializing neurons used in self-organizing neural networks and sequencing input nodes for applying to Euclidean traveling salesman problem. We use a general property that in any optimal solution for Euclidean traveling salesman problem, vertices located on the convex hull are visited in the order in which they appear on the convex hull boundary. We composite input nodes as number of convex hulls and initialize neurons as shape of the external convex hull. And then adapt input nodes as the convex hull unit and all convex hulls are adapted as same pattern, clockwise or counterclockwise. As a result of our experiments, we obtain l∼3 % improved solutions and these solutions can be used for initial solutions of any global search algorithms.

  • PDF

Machine-Part Grouping in Cellular Manufacturing Systems Using a Self-Organizing Neural Networks and K-Means Algorithm (셀 생산방식에서 자기조직화 신경망과 K-Means 알고리즘을 이용한 기계-부품 그룹형성)

  • 이상섭;이종섭;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.61
    • /
    • pp.137-146
    • /
    • 2000
  • One of the problems faced in implementing cellular manufacturing systems is machine-part group formation. This paper proposes machine-part grouping algorithms based on Self-Organizing Map(SOM) neural networks and K-Means algorithm in cellular manufacturing systems. Although the SOM spreads out input vectors to output vectors in the order of similarity, it does not always find the optimal solution. We rearrange the input vectors using SOM and determine the number of groups. In order to find the number of groups and grouping efficacy, we iterate K-Means algorithm changing k until we cannot obtain better solution. The results of using the proposed approach are compared to the best solutions reported in literature. The computational results show that the proposed approach provides a powerful means of solving the machine-part grouping problem. The proposed algorithm Is applied by simple calculation, so it can be for designer to change production constraints.

  • PDF

Effective Reduction of BSM Audit Data for Intrusion Detection System by Normal Behavior Modeling (정상행위 모델링을 통한 침입탐지 시스템에서 BSM 감사기록의 효과적인 축약)

  • 서연규;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10c
    • /
    • pp.318-320
    • /
    • 1999
  • 정보시스템의 보호를 위한 침입탐지의 방법으로 오용탐지와 비정상행위 탐지방법이 있다. 오용탐지의 경우는 알려진 침입 패턴을 이용하는 것으로 알려진 침입에 대해서는 아주 높은 탐지율을 나타내지만 알려지지 않은 침입이나 변형패턴에 대해서는 탐지할 수 없다는 단점이 있다. 반면 비정상행위 탐지는 정상행위 모델링을 통해 비정상패턴을 탐지하는 것으로 알려지지 않은 패턴에 대해서도 탐지할 수 있는 장점이 있는데 국내외적으로 아직까지 널리 연구되어 있지 않다. 본 논문에서는 BSM으로부터 얻은 다양한 정보를 추출하고 이러한 정보를 자기조직화 신경망을 이용하여 축약함으로써 고정된 크기의 순서정보로 변환하는 방법을 제안한다. 이렇게 생성된 고정크기의 순서정보는 비정상행위 탐지에 효과적으로 사용될 수 있을 것이다.

  • PDF

Customer Segmentation Model for Internet Banking using Self-organizing Neural Networks and Hierarchical Gustering Method (자기조직화 신경망과 계층적 군집화 기법(SONN-HC)을 이용한 인터넷 뱅킹의 고객세분화 모형구축)

  • Shin, Taek-Soo;Hong, Tae-Ho
    • Asia pacific journal of information systems
    • /
    • v.16 no.3
    • /
    • pp.49-65
    • /
    • 2006
  • This study proposes a model for customer segmentation using the psychological characteristics of Internet banking customers. The model was developed through two phased clustering method, called SONN-HC by integrating self-organizing neural networks (SONN) and hierarchical clustering (HC) method. We applied the SONN-HC method to internet banking customer segmentation and performed an empirical analysis with 845 cases. The results of our empirical analysis show the psychological characteristics of Internet banking customers have significant differences among four clusters of the customers created by SONN-HC. From these results, we found that the psychological characteristics of Internet banking customers had an important role of planning a strategy for customer segmentation in a financial institution.

Empirical Evaluation on Optimal Audit Data Reduction for Intrusion Detection (침입탐지를 위한 최적의 감사기록 축약에 관한 실험적 평가)

  • Seo, Yeon-Gyu;Cho, Sung-Bae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.04a
    • /
    • pp.680-685
    • /
    • 2000
  • 최근 그 심각성이 커지고 있는 해킹피해를 줄이기 위한 한 방법으로 시스템에 침입한 불법적 사용을 탐지하는 연구가 활발히 진행되고 있다. 침입을 탐지하는 방법으로는 오용탐지와 비정상행위 탐지가 있는데 비정상행위 탐지를 위해서는 정보수집의 정확성, 신속성과 함께 다량의 정보들로부터 필요한 정보를 추출하고 축약하는 것이 중요하다. 본 논문에서는 감사기록 도구인 BSM으로부터 정보를 추출하고 자기조직화 신경망을 이용하여 다차원의 정보를 저차원정보로 축약.변환하는 방법에 대한 실험적인 검증을 시도하였다. 또한 BSM에서 얻을 수 있는 데이터의 유용성을 조사하기 위하여 축약된 감사자료에 의한 탐지성능을 살펴보았다. 실험결과, 시스템 호출 및 파일관련 정보의 축약이 탐지성능향상에 크게 기여하는 중요한 척도임을 알 수 있었으며 각 척도마다 탐지성능이 좋은 맵의 크기가 다름을 알 수 있었다. 이러한 축약된 정보는 여러 정상행위 모델링방법에 의해 유용하게 사용될 수 있을 것이다.

  • PDF

A Self Organization of Wavelet Network Structure by Generation and Extinction of Hidden Nodes (은닉노드의 생성 ${\cdot}$ 소멸에 의한 웨이블릿 신경망 구조의 자기 조직화)

  • Lim, Sung-Kil;Lee, Hyon-Soo
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.12
    • /
    • pp.78-89
    • /
    • 1999
  • Previous wavelet network structures are determined by considering the relationship between wavelet windows distribution of training patterns that are transformed into time-frequency space. Because it is separated two algorithms that determines wavelet network structure and that modifies parameters of network, learning process that minimizes output error of network is executed after the network structure is determined. But this method has some weakness that training patterns must be transformed into time-frequency space by additional preprocessing and the network structure should be fixed during learning process. In this paper, we propose a new constructing method for wavelet network structure by using differences between the output and the desired response without preprocessing. Because the algorithm perform network construction and error minimizing process simultaneously, it can determine the number of hidden nodes adaptively as with the complexity of problems. In addition, the network structure is optimized by inserting new hidden nodes in the area that has maximum error and extracting hidden nodes that has no effect to the output of network. This algorithm has no constraint condition that all training patterns must be known, because it removes preprocessing procedure for training patterns and it can be applied effectively to systems that has time varying outputs.

  • PDF

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.

Center estimation of the n-fold engineering parts using self organizing neural networks with generating and merge learning (뉴런의 생성 및 병합 학습 기능을 갖는 자기 조직화 신경망을 이용한 n-각형 공업용 부품의 중심추정)

  • 성효경;최흥문
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.11
    • /
    • pp.95-103
    • /
    • 1997
  • A robust center estimation tecnique of n-fold engineering parts is presented, which use self-organizing neural networks with generating and merging learning for training neural units. To estimate the center of the n-fold engineering parts using neural networks, the segmented boundaries of the interested part are approximated to strainght lines, and the temporal estimated centers by thecosine theorem which formed between the approximaged straight line and the reference point, , are indexed as (.sigma.-.theta.) parameteric vecstors. Then the entries of parametric vectors are fed into self-organizing nerual network. Finally, the center of the n-fold part is extracted by mean of generating and merging learning of the neurons. To accelerate the learning process, neural network uses an adaptive learning rate function to the merging process and a self-adjusting activation to generating process. Simulation results show that the centers of n-fold engineering parts are effectively estimated by proposed technique, though not knowing the error distribution of estimated centers and having less information of boundaries.

  • PDF

Emotion Feature Pattern Classification Algorithm of Speech Signal using Self Organizing Map (자기 조직화 신경망을 이용한 음성 신호의 감정 특징 패턴 분류 알고리즘)

  • Ju, Jong-Tae;Park, Chang-Hyeon;Sim, Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.179-182
    • /
    • 2006
  • 현재 감정을 인식할 수 있는 방법으로는 음성, 뇌파, 심박, 표정 등 많은 방법들이 존재한다. 본 논문은 이러한 방법 중 음성 신호를 이용한 방법으로써 특징들은 크게 피치, 에너지, 포만트 3가지 특징 점을 고려하였으며 이렇게 다양한 특징들을 사용하는 이유는 아직 획기적인 특징점이 정립되지 않았기 때문이며 이러한 선택의 문제를 해결하기 위해 본 논문에서는 특징 선택 방법 중 Multi Feature Selection(MFS) 방법을 사용하였으며 학습 알고리즘은 Self Organizing Map 알고리즘을 이용하여 음성 신호의 감정 특징 패턴을 분류하는 방법을 제안한다.

  • PDF