• Title/Summary/Keyword: 자기조직화 네트워크

Search Result 29, Processing Time 0.021 seconds

Self-Organizable Bluetooth Network for Distributed Robot System (분산 로봇 시스템을 위한 자기 조직화 가능한 블루투스 네트워크)

  • 황세희;장인훈;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.54-57
    • /
    • 2004
  • 블루투스는 작은 크기와 저렴한 가격, 표준화된 프로토콜, 저전력 소모 등의 잇점으로 인해 로봇에 응용하기 적합한 무선 기술로 주목받고 있다. 그러나 단일 통신망을 구성하기 위해서는 1:7의 Master/slave 구조와 무선 통신거리 등의 제약사항이 있다. 블루투스를 로봇 시스템에 적용하기 위해서는 주위 환경에 따른 자기 조직화를 통해서 이러한 단점을 보완하고 주위 환경의 변화에 적절하게 대응을 할 수 있도록 하는 네트워크 구성 시스템이 필요하다. 자기 조직화를 하기 위해서는 Discovery, Organization, Maintenance, Reorganization의 크게 4단계의 과정을 거친다. 본 논문에서는 분산 로봇 시스템을 위해 트리구조를 이용한 자기 조직화 가능한 블루투스 네트워크를 구현하고 그 성능을 평가한다.

  • PDF

Control Weights On Supervised Kohonen Feature Map For Using Higher Order Neuron (고차 뉴런을 이용한 KOHONEN 자기 조직화 맵의 연결강도 특성)

  • Jung, Jong-Soo;Kim, Sung-Il;Jeon, Byung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2516-2518
    • /
    • 2003
  • 본 논문은 고차 뉴런의 문제점으로 지적되고 있는 뉴런이 방대하게 증가하는 문제를 해결하고자, 최적의 뉴런을 생성하고 생성되어진 고차 뉴런 중 일정 비율로 뉴런의 연결강도를 도태시켜 감에 따라 네트워크상에 나타나는 특성을 비교하였다. 본 논문은 고차 뉴런을 이용한 Kohonen의 자기 조직화 맵의 고차 뉴런부에 일정 비율로 연결강도를 도태한 후 인식률을 얻는 형태로 시뮬레이션을 하였다. 특히, 종래 형태의 고차 뉴런을 이용한 Kohonen 자기 조직화 맵의 알고리즘을 변형없이 사용하였으며 중복되는 뉴런을 최대한 억제하기 위해 2차 뉴런만을 생성한 네트워크 구조 위에 입력 데이터의 특징을 유지하고 고차 뉴런의 특징을 더욱 활성화하기 위해 일정한 양의 연결강도를 도태시킴으로써 출력면에서 국소집중 반응에 의한 정확한 인식률 향상 등을 조사하는 시뮬레이션을 하였다. 본 제안 모델의 특성을 살펴보기 위해 60개의 데이터로 이루어진 금속 소나 음데이터와 암석 소나 음 데이터를 이용하여 금속인지 암석인지를 판별하는 시뮬레이션을 하였다.

  • PDF

Distributed controllers using a Self-Organizing Map Neural Network in SDN environment (SDN 환경에서 자기조직화지도 신경망을 이용한 분산 컨트롤러)

  • Yoo, Seung-Eon;Kim, Min-Woo;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.47-48
    • /
    • 2019
  • 본 논문에서는 신경망의 일종인 자기조직화지도(Self Organizing Map)을 이용하여 컨트롤러의 순서를 정하는 모델을 제안하였다. 자기조직화지도는 자율 학습에 의한 클러스터링을 수행하는 알고리즘으로써 컨트롤러에 가중치를 부여하고 컨트롤러 간 거리를 계산하여 효율적인 컨트롤러 선택을 목표로 한다.

  • PDF

A Self-organized Network Topology Configuration in Underwater Sensor Networks (수중센서 네트워크에서 자기 조직화 기법을 이용한 네트워크 토폴로지 구성법)

  • Kim, Kyung-Taek;Cho, Ho-Shin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.542-550
    • /
    • 2012
  • In this paper, an adaptive scheme for network topology configuration is proposed to save the overall energy consumption in underwater acoustic sensor network. The proposed scheme employs a self-organized networking methodology where network topology is locally optimized by exchanging the energy-related information between neighboring nodes such as the remaining energy of each node, in a way that the network life time can be augmented without any centralized control function. Computer simulation is used to evaluate the proposed scheme comparing with LEACH in terms of the number of alive nodes after a given time, the deviation of individual nodes' residual energy and the energy consumption at the initialization and coordination stages.

World Representation Using Complex Network for Reinforcement Learning (복잡계 네트워크를 이용한 강화 학습에서의 환경 표현)

  • 이승준;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.622-624
    • /
    • 2004
  • 강화 학습(Reinforcement Learning)을 실제 문제에 적용하는 데 있어 가장 큰 문제는 차원성의 저주(Curse of dimensionality)였다 문제가 커짐에 따라 목적을 이루기 위해서 더 많은 단계의 판단이 필요하고 이에 따라 문제의 해결이 지수적으로 어려워지게 된다. 이를 해결하기 위해 문제를 여러 단계로 나누어 단계별로 학습하는 계층적 강화 학습(Hierarchical Reinforcement Learning)이 제시된 바 있다 하지만 대부분의 계층적 강화 학습 방법들은 사전에 문제의 구조를 아는 것을 전제로 하며 큰 사이즈의 문제를 간단히 표현할 방법을 제시하지 않는다. 따라서 이들 방법들도 실제적인 문제에 바로 적용하기에는 적합하지 않다. 최근 이루어진 복잡계 네트워크(Complex Network)에 대한 연구에 착안하여 본 논문은 자기조직화하는 생장 네트워크(Self organizing growing network)를 기반으로 한 간단한 환경 표현 모델을 사용하는 강화 학습 알고리즘을 제안한다 네트웍은 복잡계 네트웍이 갖는 성질들을 유지하도록 자기 조직화되고, 노드들 간의 거리는 작은 세상 성질(Small World Property)에 따라 전체 네트웍의 큰 사이즈에 비해 짧게 유지된다. 즉 판단해야할 단계의 수가 적게 유지되기 때문에 이 방법으로 차원성의 저주를 피할 수 있다.

  • PDF

Supervised Kohonen Feature Map Using Higher Order Neuron (고차 뉴런을 이용한 KOHONEN의 자기 조직화 맵)

  • Jung, Jong-Soo;Hagiwara, Massfume
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2656-2659
    • /
    • 2001
  • 본 논문은 교사 있는 학습기의 Kohonen Feature Map에 고차 뉴런을 도입, 고차 뉴런을 이용한 Kohonen의 자기 조직화 맵을 제안한다. 일반적인 Kohonen Feature Map의 특징은 입력신호를 받아 출력 면(Kohonen Feature Map) 내의 특정한 위치 주위에 집중하는 메커니즘으로 즉, 국소집중 반응을 구하는 구조이다. 본 논문에서는 종래형의 Kohonen Feature Map의 특징을 보유하며 교사 있는 학습기의 Kohonen Feature Map에 고차 뉴런을 도입하여 국소집중반응 및 특징 축출이 용이하도록 네트워크 구조를 개선한 것이다. 특히, 일차 뉴런의 문제점인 비선형 분리 문제에 대하여 교사 있는 학습기의 Kohonen Feature Map의 입력층에 고차 뉴런을 도입함으로 비선형 분리 가능한 형태의 네트워크 구조로 형성하였다. 그러나, 일반적인 고차 뉴런의 문제점을 보안하기 위해 본 논문에서는 오직 2차 뉴런만을 생성하였으며 중복되는 뉴런을 최대한 억제하였다. 본 제안 모델의 특성을 살펴보기 위해 XOR문제와 20개의 Alphabet을 식별하는 패턴인식 시뮬레이션을 했으며, 본 제안 모델의 범화능력을 알아보기 위하여 Mirror Symmetry를 사용하여 계산기 시뮬레이션을 했다. 그 결과, 본 제안 모델이 종래형의 네트워크 구조보다 뛰어난 인식률을 얻을 수 있었다.

  • PDF

Improved Rate of Convergence in Kohonen Network using Dynamic Gaussian Function (동적 가우시안 함수를 이용한 Kohonen 네트워크 수렴속도 개선)

  • Kil, Min-Wook;Lee, Geuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.204-210
    • /
    • 2002
  • The self-organizing feature map of Kohonen has disadvantage that needs too much input patterns in order to converge into the equilibrium state when it trains. In this paper we proposed the method of improving the convergence speed and rate of self-organizing feature map converting the interaction set into Dynamic Gaussian function. The proposed method Provides us with dynamic Properties that the deviation and width of Gaussian function used as an interaction function are narrowed in proportion to learning times and learning rates that varies according to topological position from the winner neuron. In this Paper. we proposed the method of improving the convergence rate and the degree of self-organizing feature map.

  • PDF

Structure-Adaptive Self-Organizing Neural Network : Application to Hangul Character Recognition (구조적응 자기조직화 신경망 : 한글 문자인식에의 적용)

  • Lee, Kyoung-Mi;Cho, Sung-Bae;Lee, Yill-Byung
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.137-142
    • /
    • 1995
  • 코호넨의 SOFM(Self-Organizing Feature Map)온 빠른 검증 학습이 가능하여 다층 퍼셉트론의 단점을 보완할 수 있는 패턴분류기로 부각되고 있다. 그러나 기본적으로 고정된 크기와 구조의 네트워크를 사용하기 때문에 실재 문제에 적용하기가 쉽지 않다는 문제가 있다. 본 논문에서는 패턴에 대한 사전 정보없이 복잡한 패턴공간을 적응적으로 분할하기 위해 구조적응되는 자기조직화 신경망을 소개하고 이를 인쇄체 한글 문자의 인식에 적용한 결과를 보여준다. 여기에서 제안하는 신경망은 SOFM의 각 셀이 좀더 자세한 SOFM으로 확장될 수 있도록하며, 확률분포가 0인 셀을 제거함으로써 패턴 공간에 보다 근사한 분류를 가능하게 한다. 실제로 이러한 방식이 한글과 같은 복잡한 분류 문제에서 어떻게 작동하는지 설명하고, 한글 완성형 2350자에 대해 실험한 결과를 보여준다.

  • PDF

A Study on Pattern Recognition with Self-Organized Supervised Learning (자기조직화 교사 학습에 의한 패턴인식에 관한 연구)

  • Park, Chan-Ho
    • The Journal of Information Technology
    • /
    • v.5 no.2
    • /
    • pp.17-26
    • /
    • 2002
  • On this paper, we propose SOSL(Self-Organized Supervised Learning) and it's architecture SOSL is hybrid type neural network. It consists of several CBP (Component Back Propagation) neural networks, and a modified PCA neural networks. CBP neural networks perform supervised learning procedure in parallel to clustered and complex input patterns. Modified PCA networks perform it's learning in order to transform dimensions of original input patterns to lower dimensions by clustering and local projection. Proposed SOSL can effectively apply to neural network learning with large input patterns results in huge networks size.

  • PDF

An Energy-Efficient Clustering Scheme in Underwater Acoustic Sensor Networks (수중음향 센서 네트워크에서 효율적인 저전력 군집화 기법)

  • Lee, Jae-Hun;Seo, Bo-Min;Cho, Ho-Shin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.341-350
    • /
    • 2014
  • In this paper, an energy efficient clustering scheme using self organization method is proposed. The proposed scheme selects a cluster head considering not only the number of neighbor nodes but also the residual battery amount. In addition, the network life time is extended by re-selecting the cluster heads only in case the current cluster head's residual energy falls down below a certain threshold level. Accordingly, the energy consumption is evenly distributed over the entire network nodes. The cluster head delivers the collected data from member nodes to a Sink node in a way of multi-hop relaying. In order to evaluate the proposed scheme, we run computer simulation in terms of the total residual amount of battery, the number of alive nodes after a certain amount of time, the accumulated energy cost for network configuration, and the deviation of energy consumption of all nodes, comparing with LEACH which is one of the most popular network clustering schemes. Numerical results show that the proposed scheme has twice network life-time of LEACH scheme and has much more evenly distributed energy consumption over the entire network.