• Title/Summary/Keyword: 자기유변 댐퍼

Search Result 33, Processing Time 0.017 seconds

Analysis of Control Performance in Gap Size of MR Damper (MR Damper의 Gap Size에 따른 제어성능 분석)

  • Heo, Gwang Hee;Jeon, Seung Gon;Seo, Sang Gu;Kim, Dae Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.41-50
    • /
    • 2021
  • In this study, the flow path width (Gap Size), which is the flow path of fluid, was selected differently among various factors that determine the Ccontrol Force of MR damper, and the change of Control Force was confirmed accordingly. For this purpose, two MR dampers with a Gap Size of 1.0mm and 1.5mm were fabricated, respectively, and dynamic load experiments were conducted according to changes in applied current and vibration conditions The experimental results showed that the minimum Control Force was 3.2 times higher than 1.5mm in the case of 1.0mm Gap Size, and the maximum Control Force was 2.3 times higher than 1.5mm in the case of 1.0mm Gap Size. In addition, the increased width of the Control Force according to applied current was 34N for Gap Size 1.0mm, and 12.7N for Gap Size 1.5mm. As the gap Size increased, the overall Control Force and the increase in the Control Force by the applied current decreased. Next, the dynamic range, which is a performance evaluation index of the semi-active Control device, was 2.3 on average under 1.0mm condition and 2.8 on average under 1.5mm condition, confirming the possibility of utilization as a semi-active Control device.

Seismic Performance Assessment of a Nonlinear Structure Controlled by Magneto-Rheological Damper Using Multi-Platform Analysis (자기유변댐퍼로 제어되는 비선형 구조물의 멀티플랫폼 해석을 이용한 내진성능평가)

  • Kim, Sung Jig
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.143-150
    • /
    • 2013
  • The paper introduces Multi-Platform Analysis (MPA) for the seismic performance of a structure controlled by Magneto-Rheological (MR) dampers and presents analytical assessment of the effect of MR damper when taking into account nonlinear behavior of the structure. This paper introduces the MR Damper Plugin that can facilitate communication between MATLAB/Simulink and a finite element analysis tool in order to account for more complex inelastic behavior of the structure with MR dampers. The MPA method using the developed MR Damper Plugin is validated with experimental results from the real-time hybrid simulation. By utilizing the proposed MPA method, the three-story RC structure controlled by MR dampers is more realistically modeled and its performance under seismic loads is investigated. It is concluded that MR damper designed for a linear structure is not effective in a nonlinear structure and can overestimate the effect of MR damper. This work is expected to overcome difficulties in the analytical assessment of structural control strategies for complex and nonlinear structures by obtaining more reliable results.

A Study on the Appication of Semi-Active Supension Units for a Combat Vehicle by Using HILS (HILS를 활용한 전투차량의 반능동 현수장치 적용에 관한 연구)

  • Kim, Chi-Ung;Kim, Moon-June;Rhee, Eun-Jun;Lee, Kyoung-Hoon;Woo, Kwan-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.967-975
    • /
    • 2010
  • There have been a lot of efforts on the improvement for the ride comfort and handling stability of the combat vehicles. Especially most of vehicles for military purpose have bad inertial condition and severe operating condition such as the rough road driving, and need a high mobility in the emergency status. It is necessary to apply the controlled suspension system in order to improve the vehicle mobile stability and ride comfort ability of crews. A feasibility study is performed on the application of the semi-active suspension system with a magneto-rheological controlled shock absorber for a $6{\times}6$ combat vehicle. First, the dynamic simulation model of the vehicle including the control model for the semi-active suspension system was executed. Based on this model, a hardware-in-the-loop simulation(HILS) system which has a semi-active suspension controller hardware was constructed. After full vehicle simulations were performed in virtual proving courses with this system, the semi-active suspension system was proven to give better ride comfort and handling stability in comparison with the conventional passive suspension system.