• Title/Summary/Keyword: 자기신호

Search Result 1,201, Processing Time 0.026 seconds

Evaluation on the stress using HRV according to elapsed time of MRI noise (HRV를 이용한 자기공명영상 소음의 시간 변화에 따른 스트레스 평가)

  • Ye, Soo-Young;Kim, Dong-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.2
    • /
    • pp.50-55
    • /
    • 2015
  • The noise of MRI shooting is 100dB loud and has an intensive psychological and physiological influences on the human body. ECG signals were measured by experimental methods, while wearing earplugs for 15 minutes in the stable state. Then the ECG signals were measured for 30 minutes while listening to about 100dB of sound in a MRI equipment. In this study, the heart rate variability of men and women was analyzed according to the MRI noise stress level through the frequency analysis. As the MRI noise level is about 100dB, HRV analysis resulted in an imbalance between the sympathetic and parasympathetic. During the period from the resting state up to 10 minutes, the maximum stress state was shown. This study will encourage MRI workers to take interests in hearing protection for the patient and to make objective indicators about MRI noises.

A Study of Signal Intensity of MRA in Flow Phantom of Fusiform Aneurysm (방추형 동맥류 모형에서 자기공명 혈관조영술의 신호강도에 대한 연구)

  • 한기석
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.83-88
    • /
    • 1998
  • Purpose : Authors correlated the three-dimensional time-of-flight MRA signal intensity characteristics and flow profile simulated by computer in an experimental flow phantom model. Materials and Methods : The three-dimensional time-of-flight MRA was performed in a fusiform flow phantom and analyzed the flow signal. computer assisted flow simulation was performed in same flow geometry. The MRA signal intensity and flow velocity distribution and direction was compared. Results : The flow was depicted as homogeneous signal internsity in inlet and outlet area and inhomogeneous signal intensity in fusiform area. Typically, the flow was depicted as target appearance in transition area to outlet. Whereas mean signal internsity decreased slowly in fusiform area, it rapidly dropped and resumed in transition area to outlet. In computer assisted flow simulation, Whereas there were flow velocity decrease and flow direction change to peripheral in entrance to fusiform area, ther were rapid flow velocity resuming and flow direction change to central in transition area to outlet. Conclusion : The signal loss and target appearance in transition area to outlet is characteristic of fusiform flow. These signal changes correlate with abrupt flow velocity and direction change well.

  • PDF

Analysis of Magnetic Resonance Signals from Diffusion Weighted Imaging using Compressed Sensitivity Encoding Technique (압축감도 부호화를 사용한 확산강조영상에서의 자기공명신호 분석)

  • Jang, ji-sung;Choi, kwan-woo;Jeong, mi-ae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2019.05a
    • /
    • pp.231-232
    • /
    • 2019
  • 최근 압축감도 부호화라는 새로운 기술의 개발로 인하여 기존보다 더 빠른 검사시간에 자기공명영상 검사가 가능하게 되었다. 감도 부호화를 이용한 터보 스핀 에코 확산강조 자기공명영상과 비교하였을 때, 압축감도 부호화를 사용한 확산강조영상에서 영상평가와 자기공명 신호 분석을 통해 적절한 영상품질을 유지하면서, 검사시간을 줄 일수 있어 확산강조영상에서에 유용하게 사용되리라 사료된다.

  • PDF

Convergence Relation Research using AMOS of between Self-efficacy and Fatigue of workers in the field of railroad signaling (철도 신호분야 현장 근무자들의 자기효능감과 피로에 대한 AMOS를 이용한 융합적 관계 연구)

  • Lee, Hyun-Ju
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.75-84
    • /
    • 2017
  • The purpose of this study is to find the relation between the detailed categories of the self-efficacy of workers in the field of railroad signaling and the detailed categories of their fatigue in the use of analysis of moment structure(AMOS) model. A self-administered questionnaire survey of workers in the field of railroad signaling had been conducted and a total of 341 copies were analyzed. This study had the assumption that their general self-efficacy and social self-efficacy would negatively influence their physical fatigue and mental fatigue. As a result, their general self-efficacy negatively influenced their physical fatigue and mental fatigue, whereas their social self-efficacy didn't influence their physical fatigue and mental fatigue. Therefore, it is possible to reduce the fatigue of the study subjects by enhancing corporate support to increase their general self-efficacy.

Analysis of the characteristics about defect signal of MFL type NDT System for Inspecting City Gas Pipelines (도시가스 배관 검사용 자기누설 비파괴검사 시스템의 결함 검출신호 특성 분석)

  • Kim, Hui Min;Yoo, Hui Ryong;Rho, Yong Woo;Park, Gwan Soo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.868-869
    • /
    • 2015
  • 지하 매설된 가스배관을 정기적으로 검사하기 위해서 가스 공급 및 용역업체에서는 주로 비피과검사 탐상장비인 MFL(Magnetic Flux Leakage) PIG(Pipeline Inspection Gauge)를 사용한다. 기존의 MFL PIG는 배관 내 유체(가스,오일 등)의 전후차단 압력의 흐름을 이용해 별도의 구동장치 없이 피그를 진행시켜 배관의 결함 유무를 평가하는 시스템이다. 하지만 10기압 이하의 낮은 운영압력과 T 분기관과 같이 급격한 곡관부가 존재하는 직경 16인치 이하의 도시가스 배관에는 기존의 시스템을 적용하기 어렵다. 이처럼 기존 MFL PIG의 적용이 불가한 도시가스 배관(직경 16인치 이하)을 활주하기 위해서는 우선 비파괴검사 시스템을 견인할 수 있는 추진 로봇이 필요하고 추진로봇에 적합한 자기누설 비파괴검사 시스템의 개발이 필요하다. 또한 비파괴검사 장비의 센서 시스템은 결함신호를 탐지하여 결함의 발생유무 및 결함의 형상을 판별하는 성능도 중요하다. 본 논문에서는 16인치 도시가스 배관의 검사를 위한 자기누설 비파괴검사 시스템의 기초설계와 대상 시스템의 자기적 특성을 분석한다. 또한 배관 외벽의 결함 발생 유무에 따른 자기누설 신호의 크기 및 분포변화를 3차원 유한요소법을 이용해 해석하여, 결함 검출 신호의 특성을 분석하는데 초점을 둔다.

  • PDF

Noise Reduction by Using Eigenfilter in Cyclic Prefix System Based on SNR (SNR에 기초한 순환적 전치 부호를 가지는 시스템에서 고유필터를 사용한 잡음 제거)

  • Kim, Jin-Goog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.10
    • /
    • pp.700-707
    • /
    • 2014
  • In this paper, we propose the noise reduction method by using the eigenfilter in cyclic prefix system based on SNR. To obtain the signal eigenvectors for the eigenfiltering, we propose a method of obtaining the autocorrelation matrix by exploiting the circulant property of the received block which results from the cyclic extension of the OFDM symbol. Since the structures of the transmitter and the receiver are not changed, the proposed method is easy to apply to the conventional OFDM system. To verify the proposed method, we evaluate the persistency of excitation (POE) criterion for the input and demonstrate the effectiveness of the proposed method in the simulation results.

Nondestructive Evaluation System using SQUID in Magnetically Un-shielded Environment (비자기 차폐 환경에서의 SQUID를 이용한 비파괴 평가 시스템에 대한 연구)

  • Chung, Soon-Hee;Hwang, Yun-Seok;Choi, Hee-Seok;Kim, Jin-Tae;Lim, Hae-Ryong;Kim, In-Seon;Kwon, Hyuk-Chan;Park, Yong-Ki;Park, Jong-Chul;Lee, Soon-Gul;Lee, Dong-Hoon;Kim, Dong-Ho
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.54-57
    • /
    • 1999
  • 본 연구에서는 SQUID를 이용한 비파괴 평가 시스템을 제작, 측정하였다. 이 시스템은 비자기 차폐 환경에서 작동할 수 있도록 설계하였고, 측정 자기 센서로는 dc 및 rf-SQUID gradiometer를 사용하였다. 비자기 차폐 환경에서 ${\sim}$nT의 미세 자기 신호를 검출하였고, 공간적으로 변화하는 외부 자기 신호를 측정, 분석하였다. 또한, 측정된 자기 신호를 통해 dc-SQUID와 rf-SQUID에 대한 비교를 했다.

  • PDF

Experimental Evidence and Analysis of a Mode Conversion of Guided Wave Using Magnetostrictive Strip Transducer (자기변형 스트립 탐촉자에 의한 유도초음파 모드 변환에 대한 실험적 검증 및 해석)

  • Cheong, Yong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.93-97
    • /
    • 2009
  • An advantage of a magnetostrictive strip transducer for a long-range guided wave inspection is that the wave patterns are relatively clear and simple when compared to a conventional piezoelectric ultrasonic transducer. Therefore, if we can characterize the evolution of defect signals, it could be a promising tool for a structural health monitoring of pipes for a long period of time as well as an identification of flaws. However, when evaluating a signal during a realistic field examination, it should be careful because of some spurious signals or false indications, such as signals due to a directionality, multiple reflections, mode conversion, geometrical reflections etc. Mode converted signals from a realistic piping mockup were acquired and analysed. We found mode conversions between a torsional guided wave T(0,1) mode and a flexural F(1,3) or longitudinal L(0,2) mode generated by a magnetostrictive strip transducer. Based on the experimental observations, an interpretation of the source of the mode conversion is discussed in a viewpoint of electromagnetic properties and structure of the strip transducer.

A Study on the Signal Correction for Multiple Defects in MFL Type Nondestructive Testing System (MFL 비파괴 검사 시스템에서 다중 결함에 의한 신호 왜곡과 신호 보정에 관한 연구)

  • Park, Jeng Hoon;Kim, Hui Min;Park, Gwan Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • MFL (Magnetic flux leakage) type nondestructive testing has been used for inspection of underground gas pipelines to find metal defects by detecting magnetic leakage signal. Because the underground gas pipeline is exposed by environment such as high pressure with great humidity, external defects are easily formed on the surface of pipelines and they are being grouped respectively. These adjacent defects cause the signal distortion of leakage flux so that it is hard to estimate the shape information of defects. In this paper, we performed to study of the signal distortion and compensating method for multiple defects in MFL type nondestructive testing system by using 3D FEM simulation. This paper proposes the basic algorithm of defect signal analysis on multiple defects on the surface of 30 inch diameter pipeline.

Indoor Positioning System using Geomagnetic Field with Recurrent Neural Network Model (순환신경망을 이용한 자기장 기반 실내측위시스템)

  • Bae, Han Jun;Choi, Lynn;Park, Byung Joon
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.57-65
    • /
    • 2018
  • Conventional RF signal-based indoor localization techniques such as BLE or Wi-Fi based fingerprinting method show considerable localization errors even in small-scale indoor environments due to unstable received signal strength(RSS) of RF signals. Therefore, it is difficult to apply the existing RF-based fingerprinting techniques to large-scale indoor environments such as airports and department stores. In this paper, instead of RF signal we use the geomagnetic sensor signal for indoor localization, whose signal strength is more stable than RF RSS. Although similar geomagnetic field values exist in indoor space, an object movement would experience a unique sequence of the geomagnetic field signals as the movement continues. We use a deep neural network model called the recurrent neural network (RNN), which is effective in recognizing time-varying sequences of sensor data, to track the user's location and movement path. To evaluate the performance of the proposed geomagnetic field based indoor positioning system (IPS), we constructed a magnetic field map for a campus testbed of about $94m{\times}26$ dimension and trained RNN using various potential movement paths and their location data extracted from the magnetic field map. By adjusting various hyperparameters, we could achieve an average localization error of 1.20 meters in the testbed.