• 제목/요약/키워드: 자기생성특성맵

검색결과 5건 처리시간 0.019초

고차 뉴런을 이용한 KOHONEN 자기 조직화 맵의 연결강도 특성 (Control Weights On Supervised Kohonen Feature Map For Using Higher Order Neuron)

  • 정종수;김성일;전병훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2516-2518
    • /
    • 2003
  • 본 논문은 고차 뉴런의 문제점으로 지적되고 있는 뉴런이 방대하게 증가하는 문제를 해결하고자, 최적의 뉴런을 생성하고 생성되어진 고차 뉴런 중 일정 비율로 뉴런의 연결강도를 도태시켜 감에 따라 네트워크상에 나타나는 특성을 비교하였다. 본 논문은 고차 뉴런을 이용한 Kohonen의 자기 조직화 맵의 고차 뉴런부에 일정 비율로 연결강도를 도태한 후 인식률을 얻는 형태로 시뮬레이션을 하였다. 특히, 종래 형태의 고차 뉴런을 이용한 Kohonen 자기 조직화 맵의 알고리즘을 변형없이 사용하였으며 중복되는 뉴런을 최대한 억제하기 위해 2차 뉴런만을 생성한 네트워크 구조 위에 입력 데이터의 특징을 유지하고 고차 뉴런의 특징을 더욱 활성화하기 위해 일정한 양의 연결강도를 도태시킴으로써 출력면에서 국소집중 반응에 의한 정확한 인식률 향상 등을 조사하는 시뮬레이션을 하였다. 본 제안 모델의 특성을 살펴보기 위해 60개의 데이터로 이루어진 금속 소나 음데이터와 암석 소나 음 데이터를 이용하여 금속인지 암석인지를 판별하는 시뮬레이션을 하였다.

  • PDF

신경망을 이용한 저비트율 영상코딩 (Low Sit Rate Image Coding using Neural Network)

  • 정연길;최승규;배철수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 추계종합학술대회
    • /
    • pp.579-582
    • /
    • 2001
  • 벡터변형은 벡터 양자화(VQ)와 부호화를 통합한 새로운 방법이다. 최근까지 부호화에 적용된 코드북 생성은 LBG 알고리즘이었으나 신경회로망을 기반으로 한 자기생성 특성맵(SOFM: Self Organizing Feature Map)의 장점을 이용하면 시스템의 성능을 개선할 수 있다는 점에 착안하였다. 본 논문에서는 SOFM 알고리즘을 적용한 VTC(Vector Transformation coding)코드북 생성과 LBG 알고리즘의 부호화률에 대한 결과를 비교하여 분석하였다. 벡터 양자화의 문제점은 계산의 복잡성과 코드북 생성에 있으므로 본 연구에서는 이 문제의 해결을 위해 신경망 접근법을 제안한다.

  • PDF

고차 뉴런을 이용한 KOHONEN의 자기 조직화 맵 (Supervised Kohonen Feature Map Using Higher Order Neuron)

  • 정종수;하기와라 마사후미
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2656-2659
    • /
    • 2001
  • 본 논문은 교사 있는 학습기의 Kohonen Feature Map에 고차 뉴런을 도입, 고차 뉴런을 이용한 Kohonen의 자기 조직화 맵을 제안한다. 일반적인 Kohonen Feature Map의 특징은 입력신호를 받아 출력 면(Kohonen Feature Map) 내의 특정한 위치 주위에 집중하는 메커니즘으로 즉, 국소집중 반응을 구하는 구조이다. 본 논문에서는 종래형의 Kohonen Feature Map의 특징을 보유하며 교사 있는 학습기의 Kohonen Feature Map에 고차 뉴런을 도입하여 국소집중반응 및 특징 축출이 용이하도록 네트워크 구조를 개선한 것이다. 특히, 일차 뉴런의 문제점인 비선형 분리 문제에 대하여 교사 있는 학습기의 Kohonen Feature Map의 입력층에 고차 뉴런을 도입함으로 비선형 분리 가능한 형태의 네트워크 구조로 형성하였다. 그러나, 일반적인 고차 뉴런의 문제점을 보안하기 위해 본 논문에서는 오직 2차 뉴런만을 생성하였으며 중복되는 뉴런을 최대한 억제하였다. 본 제안 모델의 특성을 살펴보기 위해 XOR문제와 20개의 Alphabet을 식별하는 패턴인식 시뮬레이션을 했으며, 본 제안 모델의 범화능력을 알아보기 위하여 Mirror Symmetry를 사용하여 계산기 시뮬레이션을 했다. 그 결과, 본 제안 모델이 종래형의 네트워크 구조보다 뛰어난 인식률을 얻을 수 있었다.

  • PDF

실시간 침입탐지를 위한 자기 조직화 지도(SOM)기반 트래픽 속성 상관관계 메커니즘 (Traffic Attributes Correlation Mechanism based on Self-Organizing Maps for Real-Time Intrusion Detection)

  • 황경애;오하영;임지영;채기준;나중찬
    • 정보처리학회논문지C
    • /
    • 제12C권5호
    • /
    • pp.649-658
    • /
    • 2005
  • 네트워크 기반의 공격은 그 위험성과 피해의 규모가 크기 때문에 공격 초기에 빨리 탐지하는 것이 중요하다. 그러나 지도학습 데이터 마이닝을 이용한 네트워크상의 비정상 트래픽을 탐지하는 방법은 방대한 양의 데이터 전처리와 관리자의 분석이 요구되며 관리자의 분석이 정확하다는 보장이 없을 뿐만 아니라 각 네트워크의 실시간 특성을 고려하지 못하기 때문에 탐지의 어려움이 크다. 본 논문에서는 실시간 침입 탐지와 점진적 학습을 위해 비지도학습의 데이터마이닝 기법중 하나인 자기 조직화 지도를 기반으로 트래픽 속성 상관관계 메커니즘을 제안한다. 이는 세 단계로 이루어진다. 첫 번째 단계는 초기 학습이 이루어지는 단계로 비지도 학습을 통하여 성격이 비슷한 트래픽끼리 클러스터링 한 맵을 생성시킨다. 두 번째 단계는 맵의 각 클러스터가 정상과 비정상 트래픽의 클러스터로 구분되기 위해 각 공격별로 추출된 규칙(rule)을 적용하여 맵을 분석한다. 이 규칙은 지도 학습을 통한 규칙 기반의 방법으로, 각 데이터 항목마다 SOM을 이용한 속성별 맵의 상관관계(correlation) 분석을 통해 생성되었다. 마지막으로 분석된 맵을 이용하여 실시간 탐지와 함께 점진적 학습이 이루어지게 된다. 여러 실험을 통하여 비지도 학습과 지도 학습을 결합한 SOM 기반 트래픽 속성 상관관계 메커니즘이 지도 학습에 비해 실시간 탐지에 우수함을 증명하였다.

CDSK 변조 방식에서 제안한 카오스 맵의 특성 분석 (Characteristic Analysis of Proposed Chaos Map in CDSK System)

  • 이준현;유흥균
    • 전자공학회논문지
    • /
    • 제51권5호
    • /
    • pp.44-50
    • /
    • 2014
  • 카오스 통신 시스템은 보안성을 향상시키기 위해 적용하는 보안 알고리즘 중에 하나이다. 카오스 신호는 비선형적이며 초기조건에 따라 불규칙하게 생성된다. 또한, 카오스 통신 시스템은 비주기성, 광대역성, 비예측성, 구현의 용이성 등의 특성을 가지고 있다. 그래서 카오스 통신 시스템은 보안성이 우수하고 낮은 도청 확률과 좋은 항재밍 특성을 갖는다. 하지만 BER 성능은 디지털 통신 시스템보다 나쁘게 평가되는데, CDSK 방식의 경우에는 많은 자기 간섭 신호로 인해 BER 성능이 열화된다. 이런 단점을 개선하기 위해, 우리는 이전 연구에서 BER 성능을 향상시킬 수 있는 PDF 경향을 분석하고 이를 통해 카오스 맵을 제안하였다. 그리고 제안한 카오스 맵은 Boss map이라고 정의하였다. 일반적으로, 카오스 맵의 초기값과 매개변수, 확산인자에 따라 BER 성능이 달라진다. 따라서, 본 논문에서는 BER 성능을 향상시킬 수 있는 PDF 경향을 소개하고, Boss map에 대해 설명한다. 또한, Boss map의 초기값과 매개변수, 확산인자에 따른 BER 성능을 평가하여 Boss map의 특성을 분석한다. 그 결과, Boss map은 유사한 BER 성능을 유지하면서 초기값을 0부터 1.2까지 선택할 수 있으며, 매개변수 알파값은 2.5일 때 가장 좋은 BER 성능을 보인다. 또한, 확산인자 값이 50일 때 가장 좋은 BER 성능을 가진다.