• Title/Summary/Keyword: 자기냉동

Search Result 37, Processing Time 0.042 seconds

공기조화용 자기냉동기의 연구 동향

  • 이종석
    • 대한설비공학회지:설비저널
    • /
    • 제29권4호
    • /
    • pp.48-54
    • /
    • 2000
  • 자성재료에 자기장을 걸어주변 가열되고 자기장을 제거하면 냉각되는 성질이 있는데, 이를 자기열량효과(magnetocaloric effect)라고 하며, 이것을 이용해서 저온을 생성시키는 방법을 자기냉동(magnetic refrigeration)이라고 한다. 큐리 온도(Curie temperature) 부근의 강자성체에 자 기장이 가해지면 전자례도내에서 쌍을 이루지 않은 전자들의 자기모벤트들이 자기장에 평행 하게 배열되는데, 이로 인해 열역학적 무질서의 척도인 엔트로피는 낮아지고 이러한 손실을 보상하기 위해 재료의 온도가 올라가게 된다.반대로 자기장이 제거되면 자기모벤트가 본래의 무질서한 상태로 돌아오며, 엔트로피가 증가하 고 재료의 온도는 떨어지게 되는 것이다. 역사적으로 보면 1881년에 Warburg가 큐리온도 부근의 철에서 자기열량효과를 처음 발견하였으며. 1926년과 1927년에 Debye와 Giauque가 각각 단열소자볍 (adiabatic demagnetization)을 제안함으로써 실용화되기 시작하여 주로 극저온을 얻는 방법으로 이용되어 왔다. 1950년도 이전의 연구는 절대온도 영도(OK)에 도달하고 자 하는 순수과학적인 노력으로서 개방사이클(open cycle)을 이용한 단열냉각 방식을 추구하 였으나, 1950년 이후부터는 공학적인 응용을 목적으로 밀폐사이클(closed cycle)을 형성하는 자기냉동기에 관한 연구가 진행되었다. 1976년에 Brown은 희토류(rare earth) 금속인 가돌리늄(Gd)을 사용하여 유체(물 80%와 에틸 알코올 20%)를 재생시킴으로써 상온에서 작동 하는 자기냉동기를 보고한 바 있다. 그는 7 T의 큰 자장을 이용하였으며, 고온부와 저온부의 온도는 각각 $46^{\circ}C와\;-1^{\circ}C로서\;47^{\circ}C$의 온도간격을 얻었다. 자기냉동에 있어서의 또 하나의 중요한 진전은 1978년과 1982년에 Steyert와 Barclay에 의해서 능동자기재생기(active magnetic r regenerator)의 개념이 소개되고 개발된 것으로, 이는 자성재료가 냉매로서 뿐만 아니라 열전달 유체의 재생기로도 사용되는 방식이다. 이상과 같은 자기냉동기술의 발달에 이어서 1997년에 미국의 Astronautics사(Wisconsin주 Madison시 소재)와 Ames 연구소(Iowa주 Ames 시 소재)의 공동연구팀이 발표한 두 가지의 새로운 진전으로 인해 공기조화 및 냉동분야에 적용할 수 있는 자기냉동기의 실용화 가능성이 한층 높아졌다. 이들의 연구결과는 (1) 자기냉동이 실온에서도 실현 가능한 기술이며 증기압 축식 냉동에 필적할 만하다는 것을 보인 것과 (2) 이미 알려져 있던 자기냉동재료보다 자기 열량효과가 훨씬 큰 새로운 재료를 발견한 것이다. 이로써 자기냉동에 대한 관심과 기대가 한결 커지고 있다. 본 원고에서는 자기냉동의 원리가 되는 자기열량효과와 이를 이용한 자기냉동의 방법 그리고 최근에 이루어진 새로운 진전에 대해 소개하고 공기조화 및 냉동분야에의 적용 가능성을 전망해 보고자 한다.

  • PDF

자기냉동/냉장고와 공조기

  • 이종석
    • 대한설비공학회지:설비저널
    • /
    • 제30권6호
    • /
    • pp.49-54
    • /
    • 2001
  • 1990년대 중반부터 후반에 결쳐 미국의 Astronautics사와 Ames연구소에 의한 공동연구결과는 자기냉동이 실현 가능한기술이며 가스액화,음식 냉동 및 저장, 대규모 건물 공조 등에 있어서 기존의 증기압축냉동에 필적할 만하다는 것을 밝혔다. 더 최근의 연구와 개발 노력은 자기장 원(source)으로 $Nd_2Fe_{14}B$ 영구자석배열을 이용한 회전식 자기냉동기가 가정용 공조기나 냉동/냉장고에 사용될 수 있음을 나타내고있다. Gd 금속구를 사용한 2단 자기 냉동/냉장고의 예비설계는 냉동실 온도가 $-12^{\circ}C(10^{\circ}F)$, 냉동실 온도가 $-1^{\circ}C(30^{\circ}F)$에서 전체 성능계수 3 그리고 냉각능력 120W를 얻을 수 있음을 제시한다. 자기장 원으로서 개선된 영구자석 배열을 이용한다면 카르노 효율의 60%와 성능계수 4.5에 이를 수 있을 것으로 보여진다. 그리고 자기냉동은 오존층 파괴물질 (CFC's)이나 온설가스(HCFC's와 HFC's)를 사용하지 않기 때문에 깨끗한 환경을 만드는데 기여한다. 동시에 상용 Gd으로부터 거대한 자기열량효과를 가진 재료인 $Gd_5(Si_2Ge_2)$를 kg 단위로 생산할 수 있는 정도로 연구가 진전되었다. 이 신재료를 저렴한 가격에 얻을 수 있게 됨으로써 Gd 금속을 자기냉매로 사용하도록 설계 되었던 공조기나 냉동/냉장고의 효율이 더 좋아질 것으로 예상된다.

  • PDF

자기냉동

  • 정상권;김영권
    • 기계저널
    • /
    • 제49권9호
    • /
    • pp.22-27
    • /
    • 2009
  • 자기냉동 방식은 자석 혹은 자기장을 이용하여 열 에너지 및 엔트로피를 펌핑하고자 하는 노력이다. 이 글에서는 어떻게 자기장을 효과적으로 이용하여 냉동 시스템을 구성할 수 있는지 알아보겠다.

  • PDF

동심 원통형 Halbach 배열 영구자석을 이용한 상온 자기냉동장치 (Magnetic Refrigeration Apparatus at Room Temperature Using Concentric Halbach Cylinder Permanent Magnets)

  • 이창호;이종석
    • 대한기계학회논문집B
    • /
    • 제41권1호
    • /
    • pp.47-51
    • /
    • 2017
  • 근래에 들어서 증기 압축식 냉동시스템으로 인한 대기환경 오염문제를 해결하기 위해 국제적 공조의 분위기가 형성되고 있다. 그래서 그 환경오염의 주원인으로 지적되는 CFC 냉매를 대체하는 냉동기술이 큰 주목을 받고 있다. 자기냉동은 물질의 자기열량효과를 이용하여 저온을 생성시키는 방법으로, CFC 냉매를 사용하는 대신에 고체 냉매를 사용함으로써 친환경적인 냉동 기술이라고 할 수 있다. 또한 전력 소모와 소음이 큰 압축기를 사용하지 않고, 자기장의 변화에 따른 재료의 온도 변화를 이용하여 저온부와 고온부의 온도차를 발생시킬 수 있어서 효율적인 냉동시스템으로 간주된다. 본 논문에서는 동심 원통형 Halbach 배열의 영구자석을 이용한 자기냉동장치를 제작하고, 이 장치를 이용하여 실험한 결과를 소개하고자 한다.

실온 자기냉동의 최근 연구개발 동향 (Recent R&D Trend in Magnetic Refrigeration at Room Temperature)

  • 이종석
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.613-618
    • /
    • 2006
  • The 1st International Conference on Magnetic Refrigeration at Room Temperature was held at Montreux, Switzerland during September 27-30, 2005. The conference was the first of its kind to bring together about 140 scientists and engineers interested in magnetic refrigeration in one place. The magnetocaloric effect was discovered in 1881, however, magnetic refrigeration at room temperature was demonstrated to be viable in 1997 Since then, R&D efforts toward magnetic refrigeration have been on the rise around the world, in both areas of systems and materials. The conference reflected the recent R&D trend in magnetic refrigeration at room temperature, which includes the use of permanent magnet instead of superconductor magnet, switch from reciprocating to rotary magnetic refrigeration system, development of magnetic materials based on transition metal elements besides rare earth materials such as gadolinium(Gd).

  • PDF

자기장 저속 냉동보관법을 이용한 쥐 치아 치주인대세포의 활성도 검사 (EVALUATION OF THE VIABILITY OF PERIODONTAL LIGAMENT CELL IN RAT TEETH USING SLOW CRYOPRESERVATION METHOD WITH MAGNETIC FIELD)

  • 안현정;김의성;김진;김덕원;김기열;이찬영;이승종
    • Restorative Dentistry and Endodontics
    • /
    • 제33권4호
    • /
    • pp.332-340
    • /
    • 2008
  • 본 연구의 목적은 흰쥐 상악 대구치를 발거하여 자기장 저속 냉동보관법을 이용하여 냉동 시 치주인대세포의 환성도 및 세포 사멸도를 MTT 검색법과 TUNEL 검사를 이용하여 측정하고자 하였다. 4주령의 암컷 Sprague-Dawley계 흰쥐의 상악 좌우 제1,2대 구치를 발거하여 각 군 당 12개의 쥐 치아를 MTT검색에 이용하였고 6개의 치아를 TUNEL 검사에 이용하였다. 실험군은 5개군으로 대조군은 즉시 발치군이며 4$^{\circ}C$ 냉장고에서 1주일간 보관한 냉장군, 발치 후 동해방지제 처리과정을 거쳐 -196$^{\circ}C$의 액화질소에 넣어 급속 냉동한 액화질소군, 217 mA, 60 Hz, 1 G의 자기장을 이용하여 -0.3$^{\circ}C$/min 의 속도로 -20$^{\circ}C$까지 냉동 후 -196$^{\circ}C$로 급속 냉동한 자기장군, -0.3$^{\circ}C$/min의 속도로 -20$^{\circ}C$까지 냉동 후 -196$^{\circ}C$에 급속 냉동한 저속 냉동군으로 나누었다. 보존액은 F medium을 사용했으며 동해방지제로 10% dimethyl sulfoxide (DMSO)를 사용하였다. 치근면을 단위면적으로 표준화하기 위해 MTT 측정값을 Eosin 염색 후 530 nm에서 측정 한 흡광도 값으로 나누었다. TUNEL 검사 시 각 조직슬라이드에서 400배 크기의 현미경 시야에서 임의로 세 부분을 지정하여 정상 세포수와 양성 세포수를 세어 그 비율을 계산하여 각 실험군 당 평균치를 구하였다. 통계 분석을 위해 one way ANOVA를 시행하였으며 사후검정으로 Scheffe와 Tukey HSD방법을 썼으며 결과는 다음과 같다. MTT검색에 의한 흡광도를 Eosin염색 후 측정한 흡광도로 나눈 값에서는 자기장군은 즉시 발치군보다 낮은 세포활성을 보였고 (p < 0.05) 액화질소군, 저속 냉동군과는 통계적으로 유의성 있는 차이를 보이지 않았다. 그러나 자기장군은 액화질소군, 저속 냉동군과 함께 냉장군보다는 높은 세포 활성도를 보였다 (p < 0.05) TUNEL 검사 결과도 자기장군은 즉시 발치군보다 치주인대의 세포사멸도가 높았으나 (p < 0.05) 저속 냉동군과 액화 질소군과는 통계적으로 유의한 차이를 보이지 않았다. 자기장군은 냉장군보다 세포사멸도가 낮았으며 냉장군은 모든 군 중에서 세포 사멸도가 가장 높았다 (p < 0.05).

단숙 소자화 방법에 의한 냉동기술 (Adiabatic Demagnetization Cooling Technique)

  • 이일수
    • 한국자기학회지
    • /
    • 제8권5호
    • /
    • pp.317-332
    • /
    • 1998
  • 소자화 랭동법은 전자 또는 핵의 자기 모벤트를 등온적으로 자화시킨 다음 단열상태에서 자화를 없앰으로써 온도를 내리는 방법이다. 전자의 소자화 냉동기는 교석 랭동기의 출현으로 거의 사용되지 않고 있으나 핵의 소자화 냉동기는 ${\mu}K$ 이하의 극저온을 얻을 수 있는 유일한 방법으로 극저온에서의 $^{3}He$액체 또는 $^{3}He$ 고체의 상전이, 극저온 초전도 현상, 핵의 자발질서 현상, 스핀 유리 상전이등의 연구에 많이 사용되고 있다. 핵의 소자화 냉동기는 대개 물체(시료) 전체의 온도를 내리는데 사용하나 빠른 소자화를 통해 핵만의 온도를 내리는데도 사용된다. 핵만의 온도를 내리는 냉동방법은 핵 자기 현상의 연구에 많이 이용되고 있다. 이러한 극저온을 얻기 위한 냉동법은 최첨단 기술이나 현재 국내에서는 극저온을 중점적로 연구하는 곳이 없는 실정이다. 본 논문에서는 소자화 냉동에 관한 현재의 취세를 소개하고 앞으로의 연구방향을 제시하고자 한다.

  • PDF