• Title/Summary/Keyword: 자가지방 유래 줄기세포

Search Result 5, Processing Time 0.025 seconds

Comparison of Neural Cell Differentiation of Human Adipose Mesenchymal Stem Cells Derived from Young and Old Ages (연령별 지방 중간엽 유래 줄기세포의 신경세포로의 분화 능력 비교)

  • Jo, Jung-Youn;Kang, Sung-Keun;Choi, In-Su;Ra, Jeong-Chan
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.227-237
    • /
    • 2009
  • Recently, adipose mesenchymal stem cells (AdMSC) that are similar to bone marrow MSC and blood derived MSC are thought to be another source for stem cell therapy. However, the diseases that can be applied for stem cells therapy are age-dependent degenerative diseases. Accordingly, the present study investigated the growth and differentiation potential to neural cells of human AdMSC (hAdMSC) obtained from aged thirty, forty and fifty. The growth of cells and cell viability were measured by passage and neural differentiation of hAdMSC was induced in neural differentiation condition for 10 days. Our results demonstrated that cell number, viability and morphology were not different from hAdMSC by age and passage. Immunofluorescence analysis of neural cell marker (TuJ1, NSE, Sox2, GFAP or MAP2) demonstrated no significant differences in neural cell differentiation by age and passage. As the number of passage was increased, the mRNA level of MAP2 and Sox2 was decreased in hAdMSC from age of 50 compared to hAdMSC from age of 30. In conclusion, the present study demonstrated that ability of neural cell differentiation of hAdMSC was maintained with ages, suggesting that autologous stem cells from aged people can be applied for stem cell therapy with age-dependent neural disease with the same stem cell quality and ability as stem cell derived from young age.

  • PDF

Clinical Application of Autologous Adipose Tissue Derived Mesenchymal Stem Cells in Five Dogs with Stifle Joint Osteoarthrosis (무릎 골관절증을 보이는 개에서 자가지방유래 중배엽성 줄기세포 치료 다섯 증례)

  • Yoon, Hun-Young;Kang, Dong Jun;Lee, Soo-Han;Jeong, Soon-Wuk;Chung, Byung-Hyun
    • Journal of Veterinary Clinics
    • /
    • v.31 no.3
    • /
    • pp.253-257
    • /
    • 2014
  • Five dogs presented with a history of pelvic limb lameness. On physical examination of the stifle joints, five dogs had pain, lameness, patellar luxation, or ligamentous instability. Craniocaudal and mediolateral radiographic projections revealed osteophytes or subchondral cystic lesions on the stifle joints. Based on a previously described Osteoarthrosis (OA) scoring technique, five dogs showed high OA scores. Combination of surgery and implantation of autologous adipose tissue derived mesenchymal stem cells (aAT-MSCs) or percutaneous injection of aAT-MSCs was determined with informed consent. $1{\times}10^6$ aAT-MSCs suspended in PBS was injected in the stifle joints. The follow-ups were completed 12 months after surgery. The follow-up information was based on physical examination by veterinarians. The lameness, pain on manipulation, and OA scores improved six or 12 months after implantation of aAT-MSCs. There was a radiographic evidence of decreased osteophytes and subchondral cystic lesions. These results suggest that implantation of aAT-MSCs can be considered an option for management of cases of OA in the stifle joints.

Long-term Follow-up after Implantation of Autologous Adipose Tissue Derived Mesenchymal Stem Cells to Treat a Dog with Stifle Joint Osteoarthrosis (골관절증을 보이는 개에서 자가지방 유래 줄기세포 치료 증례)

  • Yoon, Hun-Young;Lee, Jung-Ha;Jeong, Soon-Wuk
    • Journal of Veterinary Clinics
    • /
    • v.29 no.1
    • /
    • pp.82-86
    • /
    • 2012
  • A 5-year-old castrated male Chihuahua weighing 1.54 kg was examined because of a several month history of progressive right hind limb lameness. Physical examination of the stifle joints revealed pain and a grade IV medial patellar luxation on the right stifle joint. The right and left stifle joints were associated with a lameness of grade 2 and grade 0, respectively. Radiography revealed osteophytes or subchondral cystic lesions on the right and left stifle joints. Osteoarthrosis (OA) scores for the right and left stifle joints were 20 and 12 respectively. Combination of surgery and implantation of autologous adipose tissue derived mesenchymal stem cells (aAT-MSCs) was determined with informed consent. $1{\times}10^6$ aAT-MSCs suspended in PBS and 0.6 mL of hyaluronic acid were injected in the right stifle joint postoperatively. Osteoarthrosis scores and the lameness grade for the right and left stifle joints were 19 and 13, and 0 and 0 19 months after treatment, respectively, and 14 and 15, and 0 and 0 five years after treatment, respectively. This case report shows radiographical evidence of a decrease in osteophytes and subchondral cystic lesions on the stifle joint with OA after aAT-MSCs injection.

Surface maker and gene expression of human adipose stromal cells growing under human serum. (인체혈청 하에서 배양한 인체지방기질줄기세포의 표면항원 및 유전자 발현)

  • Jun, Eun-Sook;Cho, Hyun-Hwa;Joo, Hye-Joon;Kim, Hoe-Kyu;Bae, Yong-Chan;Jung, Jin-Sup
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.678-686
    • /
    • 2007
  • Human mesenchymal stem cells(hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum(FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. Previously, we have shown that hADSC can be cultured in human serum(HS) during their isolation and expansion, and that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34 cells mobilized from bone marrow in NOD/SCID mice. In this study we determined whether hADSC grown in HS maintain surface markers expression similar with cells grown in FBS during culture expansion and compared gene expression profile by Affymetrix microarray. Flow cytometry analysis showed that HLA-DR, CD117, CD29 and CD44 expression in HS-cultured hADSC during culture expansion were similar with that in FBS-cultured cells. However, the gene expression profile in HS-cultured hADSC was significantly different from that in FBS-cultured cells. Therefore, these data indicated that HS-cultured hADSC should be used in vivo animal study of hADSC transplantation for direct extrapolation of preclinical data into clinical application.

Role of NFAT5 in Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells (인체 지방 유래 중간엽 줄기세포의 골분화 조절 기전에서 NFAT5의 역할)

  • Lee, Sun Young;Yang, Ji won;Jung, Jin Sup
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.471-478
    • /
    • 2013
  • Human adipose tissue-derived mesenchymal stem cells (hADSCs) have therapeutic potential, including the ability to self-renew and differentiate into multiple lineages. Understanding of molecular mechanisms of stem cell differentiation is important for improving the therapeutic efficacies of stem cell transplantation. In this study, we determined the role of nuclear factor of activated T cells (NFAT5) in the osteogenic differentiation of hADSCs. The down-regulation of NFAT5 expression by the transfection of a specific siRNA significantly inhibited osteogenic differentiation of hADSCs and decreased the activity of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) promoter without affecting their proliferation and adipogenic differentiation. The inhibition of NFAT5 expression inhibited the basal and Tumor Necrosis Factor ${\alpha}$ (TNF-${\alpha}$) induced activation of NF-${\kappa}B$, but it did not affect TNF-${\alpha}$-induced degradation of the $I{\kappa}B$ protein. These findings indicate that NFAT5 plays an important role in the osteogenic differentiation of hADSCs through the modulation of the NF-${\kappa}B$ pathway.