• Title/Summary/Keyword: 잎특성

Search Result 1,304, Processing Time 0.029 seconds

Effects of Light Intensity, Nutrient Solution Compositions before Harvest and the Time of Nutrient Solution Removal on Nitrate Contents in Hydroponically-Grown Leaf Lettuces in Closed Plant Production System (폐쇄형 식물생산시스템에서 광도, 수확 전 양액조성 및 양액결제시기가 잎상추의 체내 질산염 함량에 미치는 영향)

  • Yeo, Kyung-Hwan;Choi, Gyeong-Lee;Lee, Jung-Sup;Lee, Jae-Han;Park, Kyoung-Sub;Kim, Jin-Hyun
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.393-401
    • /
    • 2017
  • The nitrate ($NO_3{^-}$) accumulation of hydroponically grown leafy vegetables may increase in the condition of a closed-type plant production system with low light intensity due to low activity of enzymes involved in nitrogen assimilation and the use of $NO_3-N$ as major nitrogen source. The objective of this study is to investigate the effects of light intensities, nutrient solution compositions and the time of nutrient solution removal before harvest on nitrate contents of hydroponically-grown lettuces in a closed plant production system. The reduction of nitrate contents in leafy lettuces 'Cheongchima' was higher in the treatments of 'TW' (nutrient solution removal) and '$(NH_4)_2CO_3$' (use of ammonium carbonate as nitrogen source) than those in other treatments, which significantly lowered fresh weight and leaf area of the plants. In the light intensity of $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, the nitrate content was effectively reduced without causing any growth retardation, by substitution of the nutrient solution composition that $NO_3-N$ was removed ('$NO_3-N$ removal' treatment) or the half strength of standard nutrient solution was applied ('1/2 S' treatment), for 7days before harvest. The effects of light intensity and the time of nutrient solution removal before harvest on growth and nitrate contents in leafy lettuces were investigated. The nitrate contents in leaves under the light condition of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ before nutrient solution removal were lower than those of 100 or $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The removal of nutrient solution for 7 days before harvest quickly reduced the amount of nitrates in leaves in all the light intensities with a greater degree under the $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light condition, while the 7 days-removal with both 200 and $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light conditions caused decrease in 16~31% of leaf area and 20~35% of fresh weight, compared to the 3 days-removal treatment. The nitrate contents were greatly reduced from 3,018 to 1,035 in $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and 2,021 to 480 ppm in the light condition of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, with the nutrient solution removal for 3 days before harvest, without causing any deterioration in growth and product quality. The vitamin C contents in leaves were higher in the treatment of nutrient solution removal for both 3 and 5 days before harvest with the light condition of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ than those in the light condition of 100 or $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$.

Growth and Development Response of Bell Pepper (Capsicum annum L.) to $CO_2$ Enrichment under Three Different Temperature Regimes (3온도 수준에서의 $CO_2$ 농도 증가에 따른 피망의 생육 반응)

  • Yoon, Seong-Tak
    • Korean Journal of Organic Agriculture
    • /
    • v.15 no.1
    • /
    • pp.71-84
    • /
    • 2007
  • Predicting plant responses to changing atmospheric $CO_2$ and to the possibility of global warming are important concerns. The $CO_2$ concentration of the global atmosphere has increased during the last decades. This increase is expected to result in changes of global temperatures and this will also affect the growth and development of bell pepper (Capsicum annum L.) and other crops. The objective of this study was to evaluate the effects of atmospheric $CO_2$ enrichment and high temperature on the growth and development of bell pepper under three temperature regimes. There was no statistical difference in the days required from seeding to flowering between $CO_2$ treatments, whereas among three temperature regimes, high temperature plots of $35/25^{\circ}C$ showed the shortest days (52.5 days) required from seeding to flowering. The plant height of bell peppers 15 weeks after emergence showed no statistical significance, while plots of $30/20^{\circ}C$ showed the highest plant height among the three temperature regimes. Time-course response of plant height to $CO_2$, enrichment was restrained in high $CO_2$, concentration (800ppm), at the same time higher temperature promoted plant height. Average leaf area per plant of 400ppm was $6,008.8cm^2$ and it was $5,225.1cm^2$ in the plots of 800ppm, showing 15% more leaf area compared to 400ppm $CO_2$ concentration. Leaf dry weight between $CO_2$ concentration and among temperature regimes showed a statistical significance. The average leaf dry weight in the plot of 800ppm showed the highest (44.1g), which was 18.5% higher compared to that of 400ppm (37.2g) and among temperature regimes, it was the highest (49.8g) in the plot of $35/25^{\circ}C$. Above-ground dry weight showed statistical significance between $CO_2$ concentration and among temperature regimes. The average above-ground dry weight of 800ppm $CO_2$ concentration was 141.4g, 17.9% higher compared to 400ppm $CO_2$ concentration (119.9g). Among three temperature regimes, plots of $30/20^{\circ}C$ showed the highest average above-ground dry weight (168.9g), while plots of $35/25^{\circ}C$ were the lowest (102.3g). In the average bell pepper dry weight, 800ppm of $CO_2$ concentration showed higher bell pepper dry weight (59.5g) than that (44.3g) of 400ppm of $CO_2$ concentration. It was judged that high $CO_2$ concentration was profitable fur bell pepper yield and there was a tendency that when there was high $CO_2$, concentration (800ppm), low temperature ($25/15^{\circ}C$) was profitable for bell pepper dry weight, whereas it was the reverse ($30/20^{\circ}C$), in the case of ambient $CO_2$, concentration (400ppm). In the specific leaf area according to $CO_2$, concentration, 800ppm showed 117.4, which was 35.5% higher compared to that (159.1) of 400ppm, showing that leaf becomes thicker as $CO_2$ concentration increases. Regarding correlation coefficients among crop characteristics, leaf area was negatively correlated with the number of bell peppers per plant and bell pepper dry weight, showing that the higher the leaf area, the lower the bell pepper yield. Bell pepper dry weight per plant showed positively significant correlation with the number of bell peppers per plant and total above dry weight, which showed that the higher the number of bell peppers and the total above dry weight, the higher the bell pepper yield.

  • PDF

An Investigation of Local Naming Issue of Tamarix aphylla (에셀나무(Tamarix aphylla)의 명칭문제에 대한 고찰)

  • Kim, Young-Sook
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.37 no.1
    • /
    • pp.56-67
    • /
    • 2019
  • In order to investigate the issue with the proper name of eshel(Tamarix aphylla) mentioned in the Bible, analysis of morphological taxonomy features of plants, studies on the symbolism of the Tamarix genus, analysis of examples in Korean classics and Chinese classics, and studies on the problems found in translations of Korean, Chinese and Japanese Bibles. The results are as follows. According to plant taxonomy, similar species of the Tamarix genus are differentiated by the leaf and flower, and because the size is very small about 2-4mm, it is difficult to differentiate by the naked eye. However, T. aphylla found in the plains of Israel and T. chinensis of China and Korea have distinctive differences in terms of the shape of the branch that droops and its blooming period. The Tamarix genus is a very precious tree that was planted in royal courtyards of ancient Mesopotamia and the Han(漢) Dynasty of China, and in ancient Egypt, it was said to be a tree that gave life to the dead. In the Bible, it was used as a sign of the covenant that God was with Abraham, and it also symbolized the prophet Samuel and the court of Samuel. When examining the example in Korean classics, the Tamarix genus was used as a common term in the Joseon Dynasty and it was often used as the medical term '$Ch{\bar{e}}ngli{\check{u}}$(檉柳)'. Meanwhile, the term 'wiseonglyu(渭城柳)' was used as a literary term. Upon researching the period and name of literature related to $Ch{\bar{e}}ngli{\check{u}}$(檉柳) among Chinese medicinal herb books, a total of 16 terms were used and among these terms, the term Chuísīliǔ(垂絲柳) used in the Chinese Bible cannot be found. There was no word called 'wiseonglyu(渭城柳)' that originated from the poem by Wang Wei(699-759) of Tang(唐) Dynasty and in fact, the word 'halyu(河柳)' that was related to Zhou(周) China. But when investigating the academic terms of China currently used, the words Chuísīliǔ(垂絲柳) and $Ch{\bar{e}}ngli{\check{u}}$(檉柳) are used equally, and therefore, it appears that the translation of eshel in the Chinese Bible as either Chuísīliǔ (垂絲柳) or $Ch{\bar{e}}ngli{\check{u}}$(檉柳) both appear to be of no issue. There were errors translating tamarix into 'やなぎ(willow)' in the Meiji Testaments(舊新約全書 1887), and translated correctly 'ぎょりゅう(檉柳)' since the Colloquial Japanese Bible(口語譯 聖書 1955). However, there are claims that 'gyoryu(ぎょりゅう 檉柳)' is not an indigenous species but an exotics species in the Edo Period, so it is necessary to reconsider the terminology. As apparent in the Korean classics examples analysis, there is high possibility that Korea's T. chinensis were grown in the Korean Peninsula for medicinal and gardening purposes. Therefore, the use of the medicinal term $Ch{\bar{e}}ngli{\check{u}}$(檉柳) or literary term 'wiseonglyu' in the Korean Bible may not be a big issue. However, the term 'wiseonglyu' is used very rarely even in China and as this may be connected to the admiration of China and Chinese things by literary persons of the Joseon Dynasty, so the use of this term should be reviewed carefully. Therefore, rather than using terms that may be of issue in the Bible, it is more feasible to transliterate the Hebrew word and call it eshel.

Bacterial Blight Resistance Genes Pyramided in Mid-Late Maturing Rice Cultivar 'Sinjinbaek' with High Grain Quality (벼흰잎마름병 저항성 유전자 집적 고품질 중만생 벼 '신진백')

  • Park, Hyun-Su;Kim, Ki-Young;Baek, Man-Kee;Cho, Young-Chan;Kim, Bo-Kyeong;Nam, Jeong-Kwon;Shin, Woon-Chul;Kim, Woo-Jae;Ko, Jong-Cheol;Kim, Jeong-Ju;Jeong, Jong-Min;Jeung, Ji-Ung;Lee, Keon-Mi;Park, Seul-Gi;Lee, Chang-Min;Kim, Choon-Song;Suh, Jung-Pil;Lee, Jeom-Ho
    • Korean Journal of Breeding Science
    • /
    • v.51 no.3
    • /
    • pp.263-276
    • /
    • 2019
  • 'Sinjinbaek' is a bacterial blight (BB)-resistant, mid-late maturing rice cultivar with high grain quality. To diversify the resistance genes and enhance the resistance of Korean rice cultivars against BB, 'Sinjinbaek' was developed from a cross between 'Iksan493' (cultivar name 'Jinbaek') and the F1 cross between 'Hopum' and 'HR24670-9-2-1' ('HR24670'). 'Jinbaek' is a BB-resistant cultivar with two BB resistance genes, Xa3 and xa5. 'Hopum' is a high grain quality cultivar with the Xa3 resistance gene. 'HR24670' is a near-isogenic line that carries the Xa21 gene, a resistance gene inherited from a wild rice species O. longistaminata, in the genetic background of japonica elite rice line 'Suweon345'. 'Sinjinbaek' was selected through the pedigree method, yield trials, and local adaptability tests. Using bioassay for BB races and DNA markers for resistance genes, three resistance genes, Xa3, xa5, and Xa21, were pyramided in the 'Sinjinbaek' cultivar. 'Sinjinbaek' exhibited high-level and broad-spectrum resistance against BB, including the K3a race, the most virulent race in Korea. 'Sinjinbaek' is a mid-late maturing rice cultivar tolerant to lodging. It has multiple disease resistance against BB, rice blast, and stripe virus. The yield of 'Sinjinbaek' was similar to that of 'Nampyeong'. 'Sinjinbaek' showed excellent grain appearance, good taste of cooked rice, and enhanced milling performance, and we concluded that it could contribute to improving the quality of BB-resistant cultivars. 'Sinjinbaek' was successfully introgressed with the Xa21 gene without the linkage drag negatively affecting its agronomic characteristics. 'Sinjinbaek' improved the resistance of Korean rice cultivars against BB by introgression of a new resistance gene, Xa21, as well as by pyramiding three resistance genes, Xa3, xa5, and Xa21. 'Sinjinbaek' would be suitable for the cultivation in BB-prone areas since it has been used in breeding programs for enhancing plants' resistance to BB (Registration No. 7273).