• Title/Summary/Keyword: 잉크젯 헤드

Search Result 63, Processing Time 0.03 seconds

Study on the Highly Viscous Fluid Ejection Pressure of Magnetostrictive Inkjet Head (자기변형 잉크젯헤드의 고점도 유체 토출 요구 압력에 관한 연구)

  • Oh, Ock Kyun;Park, Young-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.369-375
    • /
    • 2015
  • This paper presents ejection of high viscosity fluids with magnetostrictive inkjet printhead(Magjet), which is not common with any other printhead. The MagJet uses a magnetostrictive material, Terfenol-D rod with 10-mm in diameter and 50-mm in length, as an actuation mechanism. It has been known that high viscosity is often an obstacle in ejecting small and mono-disperse droplets. We calculated required pressure with fluidic inertia (Bernoulli equation) and viscous loss (Hagen Poiseuille equation). The required pressure for ejecting a droplet is 1300kPa. The generated force and displacement with Terfenol-D rod are estimated to be 480N (2600kPa) and $28{\mu}m$, respectively. It was enough that Magjet eject high viscosity fluid (Max 1000cP). The experiments are performed to eject the high viscosity fluid with Magjet. The ejection of high viscosity fluids is successful with the aid of Terfenol-D's high performance.

Multi-head Inkjet Patterning System for Manufacturing a Full Color Polymer Light Emitting Device (pLED) (고분자 유기 EL 제조를 위한 멀티헤드형 잉크젯 패터닝 시스템)

  • Oh, Je-Hoon;Kim, Si-Kyoung;Yoon, Hee-Youl;Oh, Se-Il;Kang, Yoo-Myung;Kim, Kwang-Il
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1219-1225
    • /
    • 2003
  • According to the increase of lifetime and efficiency, the interest in the pLED has dramatically increased recently because pLED can be applied to large-size and flexible displays. The core process in the manufacture of pLED is the printing process of red, green and blue light emitting polymers (LEP), and inkjet printing method is one of the promising technology to print red, green and blue LEP on glass substrates. In this work, we developed a multi-head inkjet patterning system with 3 heads for each color. The developed inkjet patterning system is composed of the precise positioning system, head controller circuit, real-time ink drop evaluation system, maintenance system, and stable ink supply system. Finally, we investigated the stability and reliability of the system by printing red, green and blue LEP on the dummy substrate.

  • PDF

Numerical Simulation of Hydro-Acoustic Flow in Piezo Inkjet Print Head (피에조 잉크젯 헤드의 음향파 거동의 수치 해석)

  • Lee, You-Seop;Wee, Sang-Kwon;Oh, Se-Young;Chung, Jae-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.51-61
    • /
    • 2007
  • This paper presents numerical and theoretical studies of acoustic wave interactions in slightly compressible liquids within piezoelectrically driven inkjet print heads. The interconnected flow channels may cause jet crosstalk, resulting in poor printing quality. It should be reduced by modifying the channel structure with the acoustic wave interactions considered. Compressible gas flow driven by the sudden movement of a top wall in the channel is calculated using Flow3D and is validated with the narrow gap theory. Limited compressibility model of the Flow3D is employed to calculate pressure waves of slightly compressible ink flow. It is found that reducing restrictor width can damp out the jet crosstalk by inhibiting the pressure wave propagation. The degree of crosstalk has been quantified using the maximum values of cross-correlations between neighboring channels and a critical channel dimension for acceptable crosstalk has been proposed. This finding is verified by drop visualization experiments using silicon-micromachined piezo inkjet print heads that are fabricated by our group.

A Study on Droplet Formation from Piezo Inkjet Print Head (피에조 잉크젯 헤드에서 액적 토출 현상에 대한 연구)

  • Oh Se-Young;Lee Jung-Yong;Lee Yu-Seop;Chung Jae-Woo;Wee Sang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.1003-1011
    • /
    • 2006
  • Droplets are ejected onto a substrate through a nozzle by pushing liquids in flow channels of drop-on-demand devices. The behavior of ejection and formation of droplets is investigated to enhance the physical understanding of the hydrodynamics involved in inkjet printing. The free surface phenomenon of a droplet is described using $CFD-ACE^{TM}$ which employs the volume-of-fluid (VOF) method with the piecewise linear interface construction (PLIC). Droplet formation characteristics are analyzed in various flow regimes with different Ohnesorge numbers. The computational results show that the droplet formations are strongly dependent on the physical properties of working fluids and the inlet flow conditions. In addition, the wetting characteristics of working fluids on a nozzle influence the volume and velocity of a droplet produced in the device. This study may provide an insight into how a liquid droplet is formed and ejected in a piezoelectric inkjet printing device.

Preparation and Characterization of Heating Element for Inkjet Printer (잉크젯 프린터용 발열체의 제작과 특성연구)

  • 장호정;노영규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • The crystallized stable cobalt silicide$(CoSi_2)$ films were prepared on $poly-Si/SiO_2/Si$substrates for the application of inkjet printing head as a heating element with omega shape. The structural images and temperature resistance coefficient were investigated. The value of temperature resistance coefficient of the heating element was found to be about $0.0014/^{\circ}C$. The maximum power of the heating element was 2 W at the applied voltage of 2 V, 10 kHz in frequency and $1{\mu}s$ in pulse width. From the investigation of fatigue property according to the repeated applied voltages, there was no drastic changes in the resistances of heating element under the condition of $10^8$ pulsed cycles at below 15 V biased voltage. In contrast, the resistance of heating element was greatly increased at $10^6$ pulsed cycles when the heating element was operated at 17 V.

  • PDF

Characterization and synthesis of aqueous pink-red ceramic ink for digital inkjet printing (잉크젯 프린팅용 pink-red 수계 무기잉크의 제조 및 특성평가)

  • Lee, Won-Jun;Hwang, Hae-Jin;Han, Kyu-Sung;Cho, Woo-Suk;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.1
    • /
    • pp.20-26
    • /
    • 2015
  • Ceramic ink-jet printing technology in art tiles, decorated tablewares and other porcelain products has many advantages of fast and precision printing of various images with high efficiency and low cost. For the application to ink-jet printing, ceramic ink requires a stable dispersibility with nano-sized pigments. In this paper, characteristics of pink-red aqueous ceramic ink for ink-jet printing was demonstrated. $CaCr_{0.1}Sn_{0.8}SiO_5$ pigment was synthesized using solid state reaction and deagglomerated using attrition milling. The aqueous ceramic ink contains 10 wt% of the obtained $CaCr_{0.1}Sn_{0.8}SiO_5$ nanopigment with 0.4 wt% of sodium dodecyl sulfate (SDS) as a dispersion agent. Viscosity of $CaCr_{0.1}Sn_{0.8}SiO_5$ aqueous ceramic ink was adjusted using 0.18 wt% of polyvinyl alcohol (PVA) for a suitable jetting from the nozzle. The prepared pink-red ceramic ink showed a good jetting property with formation of a single sphere-shaped droplet after $180{\mu}s$ without a tail and satellite droplet.

Development of Ink-Jet Head Controller for Electro-Luminescence Display (유기 EL 디스플레이 생산 공정을 위한 잉크젯헤드 제어시스템 구현)

  • Jung, S.U.;Lee, H.S.;Ryoo, J.H.;Park, J.S.;Chung, M.J.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.623-625
    • /
    • 2004
  • In Electro-Luminescence Display making process, it is necessary to do high molecule patterning effectively. Recently, one of the most effective way is the patterning method using Ink-Jet head controller. To maximize the effect, it is needed to control each channel of Ink-Jet head and develop that controller. Thus, we implement the Ink-Jet Head Controller which can control the parameters of 128 fire pulses independently, improve the accuracy of patterns more than 100 times previous ones, and apply random patterns.

  • PDF

Process Improvement of PCB Electric Circuit Pattern by Ink Drop Jetting Control and Characteristics Analysis of Industrial Inkjet Piezoelectric Print Head (산업용 잉크젯 압전프린트 헤드의 특성해석 및 잉크 망점제어에 의한 PCB 전기회로패턴 공정개선)

  • Youn, Shin-Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.57-65
    • /
    • 2016
  • This paper was analyzed the characteristics of piezoelectric inkjet print head using finite element method(FEM). It showed the bending node driving of piezoelectric and relation theory principle consider piezoelectric material characteristics and ink characteristics. From such result we were had the piezoelectric head design and manufacture. It got a this head characteristics through experiment, we confirmed that proper voltage control is possible to through ink drop control experiment of piezoelectric print head. This paper was obtained the suitable ink jetting characteristics that manufacture the control circuit and piezoelectric inkjet print head. This practice product was applied to improvement of PCB electric circuit pattern by etching resist ink that PCB manufactured to complex process over traditional 6 stages can be simpled to 1 stage by inkjet printing technology.

Piezo-driven inkjet printhead monitoring system (압전 잉크젯 헤드 모니터링 시스템)

  • Lee, Byeung-Leul;Kim, Sang-Il
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.124-129
    • /
    • 2010
  • For the industrial printing applications, the stability of the piezo-driven inkjet printhead is a major requirement. In this paper, we focused on the failure modes of the inkjet printhead and realized a method to detect and repair them at high speed. The printhead monitoring is performed by detecting the residual vibration of the actuating plate using the self- sensing capability of the piezoelectric material. To measure the channel acoustics and to identify the malfunctioning nozzle, we devised the bridge sensing circuitry and failure detection algorithm. The residual vibration signals can be affected by the boundary conditions of the channel acoustics, so it is possible to identify the failure causes by analyzing the monitoring signals. Therefore it is also possible to apply a proper restoring process to the defective printhead. The experimental results show that this method is effective in improving the reliability of the industrial printing.

A Study on the Development of SFF System based on 3DP Process (3차원 프린팅(3DP) 공정을 기반으로 한 임의형상제작(SFF) 시스템 개발에 관한 연구)

  • Lee Won-Hee;Kim Jung-Su;Lee Min-Cheol;Kim Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.168-176
    • /
    • 2006
  • Nowadays, Three dimensional printing (3DP) technique that is one of solid freeform fabrication (SFF) technology has been notable issue, and has been applied by various fields. The SFF system can fabricate three dimensional objects of solid freeform with high speed and low cost using ink jet printing technology. In this research, a SFF system to analyze 3DP process technology is developed. We applied sliding mode control with sliding perturbation observer (SMCSPO) algorithm and minimized position error to the developed SFF system. We analyzed and optimized process variables such as jetted volume, layer thickness, powder bed and so on experimentally. Also. the dimensional error of a developed SFF system is evaluated. Finally, the feasibility of application to bio manufacturing is presented through successful fabrication of teeth and cranium model.