• Title/Summary/Keyword: 잉크젯프린트헤드

Search Result 15, Processing Time 0.026 seconds

Characteristics Analysis of Piezoelectric Inkjet Print Head using FEM (유한요소법을 이용한 압전세라믹 잉크젯 프린트헤드의 특성해석)

  • Baek, S.H.;Kim, Y.;Choi, G.S.;Yoon, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.49-52
    • /
    • 2007
  • 본 논문에서는 FEM (Finite Element Method)을 이용한 압전세라믹의 특성해석을 통하여 잉크젯 프린트헤드를 설계, 제작하였다. 압전세라믹의 물질 특성과 잉크유체 특성을 고려한 굽힘 모드방식의 구동원리와 이론정립을 하였다. 압전방정식은 압전구조에 의한 공진주파수로 압전 파라미터를 구할 수 있고, 실험을 통하여 이러한 측정값을 얻을 수 있었다. 제작된 압전세라믹 프린트헤드의 잉크드롭 실험결과 통하여 이에 대한 특성을 알 수 있었다. 이때 잉크유체의 음파와 압전 공진주파수 범위 내에서 압전세라믹 응력(변형)의 이득을 발생할 수 있음을 제작한 128노즐의 압전세라믹 잉크젯 프린트헤드로부터 알 수 있었다.

  • PDF

Droplet Characteristics Analysis for Piezoelectric head of Industrial Inkjet Print System (산업용 잉크젯 프린트 장치의 압전 헤드에 대한 액적분사 특성해석)

  • Yoon, Shin-Yong;Baek, Soo-Hyun;Kim, Yong;Lee, Wha-Jin;Kim, Na-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.961-964
    • /
    • 2007
  • 본 논문에서는 FEM (Finite Element Method)을 이용한 압전세라믹의 특성해석을 통하여 잉크젯 프린트헤드를 설계, 제작하였다. 압전세라믹의 물질특성과 잉크유체 특성을 고려한 굽힘 모드방식의 구동원리와 이론정립을 하였다. 압전방정식은 압전구조에 의한 공진주파수로 압전 파라미터를 구할 수 있고, 실험을 통하여 이러한 측정값을 얻을 수 있었다. 제작된 압전세라믹 프린트헤드의 잉크드롭 실험결과 통하여 이에 대한 특성을 알 수 있었다. 이때 잉크유체의 음파와 압전 공진주파수 범위 내에서 압전세라믹 응력(변형)의 이득을 발생할 수 있음을 제작한 128노즐의 압전세라믹 잉크젯 프린트헤드로부터 알 수 있었다.

  • PDF

Design of thermal inkjet print head with robust and reliable structure (크렉 방지를 위한 잉크젯 프린트 헤드 강건 설계)

  • Kim, Sang-Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.337-342
    • /
    • 2022
  • Although printing technology has recently been widely used in IT fields including displays and fuel cells, residual and thermal stress are generated by a manufacturing process of stacking the layers of the print head and result in the substrate deformation and nozzle plate crack, which may cause ink leaks or not be ejected onto a desired region. Therefore, in this paper, we propose a new design of thermal inkjet print head with a robust and reliable structure. Diverse types of inkjet print head such as a rib, pillar, support wall and individual feed hole are designed to reduce the deformation of the substrate and nozzle plate, and their feasibility is numerically investigated through FEA analysis. The numerical results show that the maximum stress and deformation of proposed print head dramatically drops to at least 40~50%, and it is confirmed that there is no nozzle plate cracks and ink leakage through the fabrication of pillar and support wall typed print head. Therefore, it is expected that the proposed head shape can be applied not only to ink ejection in the normal direction, but also to large-area printing technology.

Lumped Modeling of Thermal Inkjet Print Head (열 잉크젯 프린트헤드의 집중질량 모델링)

  • Lee You-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.942-949
    • /
    • 2006
  • A lumped model is proposed to predict liquid ejection characteristics of a thermally driven inkjet print head. The model is based on a two-dimensional heat conduction equation, an empirical pressure-temperature equation and a nonlinear hydraulic flow-pressure equation. It has been simulated through the construction of an equivalent R-C circuit, and subsequently analyzed using SIMULINK and a circuit simulation tool, PLECS. Using the model, heating and cooling characteristics of the head are predicted to be in agreement with the IR temperature measurements. The effects of the head geometry on the drop ejection are also analyzed using the nonlinear hydraulic model. The present model can be used as a design tool for a better design of thermal inkjet print heads.

Droplet Ejection and Experimental Study on the Application of Industrial Inkjet Printhead (산업용 잉크젯 프린트헤드 액적 토출현상의 실험적 해석)

  • Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.34-40
    • /
    • 2011
  • In this paper, a hybrid design tool combining one-dimensional(1D) lumped model and three-dimensional computational fluid dynamics(CFD) approach has been developed in order to evaluate the performance of inkjet print head and droplet control process are studied to reduce the deviations between nozzles which affect the size of the printed line for the industrial application of direct writing on printed circuit boards(PCB). 1D lumped model analysis shows that it is useful tool for evaluating performance of an inkjet head by varying the design parameters. The differences in ejected volume and droplet velocity between analytical and experimental result are within 12%. Time sequence of droplet generation is verified by the comparison between 3D analysis result and photographic images acquired by stroboscopic technique. In addition, by applying DPN process, velocity and volume uniformity between nozzles is dramatically improved that the tolerance achieved by the piezoelectric inkjet printhead across the 64 nozzles is 5 to 8%. A printed line pattern is successfully obtained using the fabricated inkjet print head and droplet calibration system.

  • PDF

Modeling of Crosstalk Behaviors in Thermal Inkjet Print Heads (열 잉크젯 프린트헤드의 채널간 간섭현상의 모델링)

  • Lee, You-Seop;Sohn Dong-Ki;Kim Min-Soo;Kuk Keon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.141-150
    • /
    • 2007
  • This paper presents a lumped model to predict crosstalk characteristics of thermally driven inkjet print heads. Using the lumped R-C model, heating characteristics of the head are predicted to be in agreement with IR temperature measurements. The inter-channel crosstalk is simulated using the lumped R-L network. The values of viscous flow resistance, R and flow inertance, L of connecting channels are adjusted to accord with the 3-D numerical simulation results of three adjacent jets. The crosstalk behaviors of a back shooter head as well as a top shooter head have been investigated. Predictions of the proposed lumped model on the meniscus oscillations are consistent with numerical simulation results. Comparison of the lumped model with experimental results identifies that abnormal two-drop ejection phenomena are related to the increased meniscus oscillations because of the more severe crosstalk effects at higher printing speeds. The degree of crosstalk has been quantified using cross-correlations between neighboring channels and a critical channel dimension for acceptable crosstalk has been proposed and validated with the numerical simulations. Our model can be used as a design tool for a better design of thermal inkjet print heads to minimize crosstalk effects.

Design of array typed inkjet head for line-printing (라인 프린팅을 위한 어레이 방식 잉크젯 헤드 설계)

  • Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.529-534
    • /
    • 2023
  • Although line printing technology is capable of high-speed and large area printing, residual stresses generated during the manufacturing process can deform the feedhole, causing nozzle plate crack or ink leaks. Therefore, in this paper, we propose a new thermal inkjet print head that is robust, reliable and more suitable for line-printing. The amount of deformation of the conventional line printing head measured through the experiment was converted into an equivalent load, and the validity of the load estimation method was verified through FEA analysis. In addition, in order to minimize deformation without increasing the head size, the head structure was designed to increase internal rigidity by reinforcing the unit nozzle with a pillar or support wall or by adding a support beam or dry/wet etched bridge. The FEA analysis results show that the feedhole deformation was reduced by up to 90%, and it is confirmed that the suggested print head with dry etched feedhole bridge operates normally without nozzle plate cracks and ink leakage through fabrication.

Each Nozzle Control for Optimum Formation of Ink Drop of Piezoelectric Printing Head (압전 프린트헤드의 잉크드롭 최적형성을 위한 각 노즐제어)

  • Choi, Geun-Soo;Youn, Shin-Yong;Baek, Soo-Hyun;Kim, Yong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.215-217
    • /
    • 2006
  • 본 논문에서는 잉크젯 프린팅 기술을 이용한 산업용 FPCB의 패턴형성을 위한 잉크드롭의 최적형성을 연구목적으로 하였다. 이를 위하여 압전헤드에 대한 구동특성을 해석하였으며 드롭형성을 위한 전압파형의 크기, 펄스폭, 기울기(감속)조정을 통하여 잉크드롭을 최적으로 형성하도록 제어기(FPGA)를 구성하였으며 실험결과를 통하여 잉크의 최적형성 과정을 확인할 수 있었으며 잉크 드롭시 1[mm]에 ${\pm}10$[um]의 드롭오차를 ${\pm}2$[um]까지 감소시켜 50[um]패턴을 프린트하였다.

  • PDF

Phase Matching of Pressure Wave in a Drop-On-Demand Inkjet Print Head (요구 적출형 잉크젯 프린트 헤드에서의 압력파 위상 정합)

  • Kim, Myong-Ki;Hwang, Jun-Young;Lee, Sang-Ho;Kang, Kyung-Tae;Kang, Heui-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.116-125
    • /
    • 2008
  • Inkjet printing technology with a drop-on-demand (DOD) inkget head technology has been recognized as one of versatile and low cost manufacturing tools in the electronics industry. Concerned with control of driving signal, however, general strategy to optimize jetting stability has not been understood well, because of the inherent complex multi-physics nature in inkjet phenomena. Motivated by this, present study investigates the effect of driving waveforms of piezoelectric head on jetting characteristics of DOD inkjet system focused on jetting stability with phase matching of pressure waves in the print head. The results show that velocities and volumes of the ink jetted droplets were linear relations with the driving signal's maximum voltage, while periodic behaviors are observed with the driving signal's pulse widths.

Phase Matching of Pressure Wave in a Drop-On-Demand Inkjet Print Head (요구 적출형 잉크젯 프린트 헤드에서의 압력파 위상 정합)

  • Kim, Myong-Ki;Hwang, Jun-Young;Lee, Sang-Ho;Kang, Kyung-Tae;Park, Mun-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1444-1449
    • /
    • 2007
  • Inkjet printing technology with a drop-on-demand (DOD) inkjet head technology has been recognized as one of versatile and low cost manufacturing tools in the electronics industry. Concerned with control of driving signal, however, general strategy to optimize jetting stability has not been understood well, because of the inherent complex multi-physics nature in inkjet phenomena. Motivated by this, present study investigates the effect of driving waveforms of piezoelectric head on jetting characteristics of DOD inkjet system focused on jetting stability with phase matching of pressure waves in the print head. The results show that velocities and volumes of the ink jetted droplets were linear relations with the driving signal's maximum voltage, while periodic behaviors are observed with the driving signal's pulse widths.

  • PDF