• Title/Summary/Keyword: 입자 추적 화상 속도계

Search Result 2, Processing Time 0.02 seconds

A Study on the Flow Characteristics of the Mixture in an Intake Manifold (흡기관 내의 혼합기 유동 특성에 관한 연구)

  • 이창식;조병옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.218-228
    • /
    • 1996
  • The behaviors of the mixture at the downstream of throttle valve in a TBI type gasoline engine plays a greater role in design of intake system. A good mixture has been influencing directly not only on the engine power but also on the pollutant emission. The mixture flow in an intake manifold is very complex, and the flow characteristics are varied with the valve type, valve angle, inlet air flow rate, and the other flow factors. Three kinds of valve are chosen in this study, and the informations of the mixture flow are observed experimentally using a PIV apparatus. Perforate valve has a smaller recirculation zone than the case of solid valve with a lower valve loss coefficient, and iti is verified that the perforated valve is also suitable to control the flow rate in a mixture flow system.

  • PDF

Simultaneous velocity and temperature measurement of thermo-fluid flows by using particle imaging technique (화상처리기법을 이용한 온도장 및 속도장 동시 측정기법 개발)

  • Lee, Sang-Joon;Baek, Seung-Jo;Yoon, Jong-Hwan;Doh, Deog-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3334-3343
    • /
    • 1996
  • A quantitative flow visualization technique was developed to measure velocity and temperature fields simultaneously in a two-dimensional cross section of thermo-fluid flows. Thermochromic liquid crystal(TLC) particles are used as temperature sensor and velocity tracers. Illuminating a thermo-fluid flow with a thin sheet of white light, the reflected colors from the TLC particles in the flow were captured simultaneously by two CCD cameras; a 3-chip CCD color camera for temperature field measurement and a black and white CCD camera for velocity field measurement. Variations of temperature field were measured by using a HSI true color image processing system and TLC solution. The relationship between the hue values of TLC color image and real temperature was obtained and this calibration curve was used to measure the true temperature under the same camera and illumination condition. The velocity field was obtained by using a 2-frame PTV technique using the concept of match-probability to track true velocity vectors from two consecutive image frames. These two techniques were applied at the same time to the unsteady thermal-fluid flow in a Hele-Shaw cell to measure the temperature and velocity field simultaneously and some results are discussed.