• Title/Summary/Keyword: 입자 감쇠

Search Result 66, Processing Time 0.247 seconds

Optimization of Ultrasonic Soil Washing Processes Using Aluminum Foil Erosion Tests (알루미늄 호일 부식 실험을 이용한 초음파 토양 세척 공정 개발의 기초 연구)

  • Kim, Seulgi;Son, Younggyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.92-98
    • /
    • 2015
  • The physical effect induced by acoustic cavitation was investigated to accumulate basic data for the design of ultrasonic soil washing processes using aluminum foil erosion tests. A square aluminum foil was placed on the glass beads in the pyrex vessel submerged in the sonoreactor equipped with a 36 kHz ultrasound transducer module at the bottom. Cavitational erosion of foils was quantitatively analyzed for various glass bead diameter conditions (1, 2, and 4 mm), glass bead height conditions (5, 10, 15, and 20 mm), and water height conditions (5, 10, 15, and 20 mm). It was found that aluminum foil erosion significantly increased as the glass bead diameter increased and water height over the glass bead increased due to less attenuation of ultrasound and the optimization of sound field for cavitation. Moreover mechanical mixing was suggested to move constantly particles to the bottom area where the acoustic cavitation occurs most violently. It was because aluminium foil erosion by ultrasound transmitted through glass beads was relatively too weak.

Geoacoustic Modeling for Analysis of Attenuation Characteristics using Chirp Acoustic Profiling data (광역주파수 음향반사자료의 감쇠특성 분석을 위한 지질음향모델링 기법 연구)

  • Chang Jae-Kyeong;Yang Sung-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.202-208
    • /
    • 1999
  • We introduce a new acoustic parameter for the classification of seafloor sediments from chirp sonar acoustic profiling data. The acoustic parameter is defined as a derivative of the unwrapped phase of the Fourier transform of acoustic profiling data. Consequently, it represents the characteristics of attenuation by dissipative dispersion in sediments. And we estimated acoustic properties by geoacoustic modeling using Chirp data obtained from the different sedimentary facies. Our classification results, when compared with the results of analysis of sampled sediments, show that the acoustic parameter discriminates sedimentary facies and bottom hardness. Thus the method in this paper is expected to be an effective means of geoacoustic modeling of the seafloor.

  • PDF

Analysis on Shock Attenuation of STS Bulkhead Initiator (STS 격벽착화기의 충격파 감쇠 특성 해석)

  • Kim, Bohoon;Jang, Seung-gyo;Yoh, Jai-ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.440-444
    • /
    • 2017
  • Two-dimensional hydrodynamic analysis was performed to analyze the attenuating characteristics of shock waves generated by the detonation of the bulkhead initiator. Through the interlocking analysis between HNS and HMX stacking initiator and STS bulkhead, we have precisely simulated detonation growth and pressure wave attenuation phenomena. The free surface velocity at the surface of the bulkhead was measured for quantitative comparison with the test data by VISAR. As a result, it was confirmed that the pressure attenuating pattern of the shock wave exponentially decreased according to the bulkhead thickness. The observed inflection point at the particle velocity measured over time is due to the subsequent propagation of the shock wave due to the rapid spallation of the interface between the detonator and the bulkhead.

  • PDF

Linear Stability Analysis for Combustion Instability in Solid Propellant Rocket (고체추진 로켓의 선형 안정성 요소에 대한 연구)

  • Kim, Hakchul;Kim, Junseong;Moon, Heejang;Sung, Honggye;Lee, Hunki;Ohm, Wonsuk;Lee, Dohyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.27-36
    • /
    • 2013
  • Linear stability analysis for combustion instability within a cylindrical port of solid rocket motor has been conducted. The analysis of acoustic energy has been performed by a commercial COMSOL code to obtain the mode function associated to each acoustic mode prior to the calculation of stability alpha. An instability diagnosis based on the linear stability analysis of Culick is performed where special interests have been focused on 5 stability factors(alpha) such as pressure coupling, nozzle damping, particle damping and additionally, flow turning effect and viscous damping to take into account the flow and viscosity effect near the fuel surface. The instability decay characteristics depending on the particle size is also analyzed.

The Antenna Coating Compound Performance Test for Rainfall Decrease Reduction (강우감쇠 저감을 위한 안테나 코팅제 성능 시험)

  • Hong, Sung-Taek;Shin, Gang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1777_1778
    • /
    • 2009
  • 한국수자원공사에서는 1998년부터 단계적으로 12~14 GHz의 Ku-band 대역을 사용하고 있는 무궁화위성을 이용하여 우량 및 수위, 경보 등의 데이터를 송수신하고 있으며, 특히 강우가 집중되는 기간 동안에는 그 데이터의 필요성이 더욱 큰 실정이다. 사용하고 있는 위성통신망 주파수의 파장은 2~2.5 cm 이므로 물방울 입자에 의해 산란되는 특징을 가지고 있으며, 이로 인해 안테나 및 휘드혼의 표면에 물방울이 묻어 있으면 전파가 산란되어 신호가 감쇠되는 특성을 가지고 있다. 따라서 본 연구에서는 강우시 안테나 및 휘드혼 표면에 발생하는 물방울 맺힘 현상에 대해 물방울과 전파신호간의 상관관계를 분석하고, 위성안테나 성능을 개선방안을 시험하여, 강우로 인한 위성신호의 감쇠를 최소화하여, 최적화된 안테나 성능 구현으로 강우 영향을 최소화하여 안정적인 위성단말국을 운영하고자 한다.

  • PDF

형광에 관하여

  • 조득래
    • Product Safety
    • /
    • s.72
    • /
    • pp.66-69
    • /
    • 1999
  • 다른 방사원의 방사, 혹은 입자의 빔(beam)에 의해 여기(勵起)되고, 어던 종류의 물질이 빛, 기타의 전자방사를 일으키는 것으로, 조사(照射)를 정지하면 10$^{-8}$S 정도의 단시간에 빛이 감쇠(減衰)한다. 이때 인광(燐光)과 같이 잔광이 지속되지 않는다. CRT(cathode-raytube: 음극선관)에서 전자빔에 의해 발광하고, 형광등의 경우는 자외선의 방사에 의해 가시광(可視光)이 생긴다. CRT의 경우, 형광물질에 따

  • PDF

Estimation of Shear Moduli Degradation Characteristics from Pressuremeter Tests (프레셔미터 시험을 이용한 전단탄성계수 감쇠 특성 평가)

  • Kwon, Hyung Min;Chung, Choong Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.105-113
    • /
    • 2009
  • Pressuremeter test estimates deformational properties of soil from the relationship between applied pressure and the displacement of cavity wall, and the results reflect the in-situ stress condition and the structure of soil particles. This study suggests the overall process of test and analysis for the evaluation of nonlinear degradation characteristics of shear moduli, based on the reloading curve of pressuremeter test. The method estimates the maximum shear modulus, taking into account the difference between the stress states around the probe in reloading and that of the in-situ state, and then combines the degradation characteristics of shear moduli taken from reloading curve. This procedure derives the shear moduli in overall strain range. Pressuremeter tests were carried out in various ground conditions using large calibration chamber, together with various reference tests. Shear moduli taken from pressuremeter tests were compared with bender element test and resonant column test results.

Measurement of the Plane Wave Reflection Coefficient for the Saturated Granular Medium in the Water Tank and Comparison to Predictions by the Biot Theory (수조에서 입자 매질의 평면파 반사계수 측정과 Biot 이론에 의한 예측)

  • Lee Keun-Hwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.246-256
    • /
    • 2006
  • The plane wave reflection coefficient is an acoustic property containing all the information concerning the ocean bottom and can be used as an input parameter to various acoustic propagation models. In this paper, we measure the plane wave reflection coefficient, the sound speed, thd the attenuation for saturated granular medium in the water tank. Three kinds of glass beads and natural sand are used as the granular medium. The reflection experiment is performed with the sinusoidal tone bursts of 100 kHz at incident angles from 28 to 53 degrees, and the sound speed and attenuation experiment are performed also with the same signal. From the measured reflection signal, the reflection coefficient is calculated with the self calibration method and the experimental uncertainties are discussed. The sound speed and the attenuation measurements are used for the estimation of the porosity and permeability, the main Biot parameters. The estimated values are compared to the directly measured values and used as input values to the Biot theory in order to calculate the theoretical reflection coefficient. Finally, the reflection coefficient predicted by Biot theory is compared to the measured reflection coefficient and their characteristics are discussed.

Identification of the Sectional Distribution of Sound Source in a Wide Duct (넓은 덕트 단면내의 음원 분포 규명)

  • Heo, Yong-Ho;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.87-93
    • /
    • 2014
  • If one identifies the detailed distribution of pressure and axial velocity at a source plane, the position and strength of major noise sources can be known, and the propagation characteristics in axial direction can be well understood to be used for the low noise design. Conventional techniques are usually limited in considering the constant source characteristics specified on the whole source surface; then, the source activity cannot be known in detail. In this work, a method to estimate the pressure and velocity field distribution on the source surface with high spatial resolution is studied. The matrix formulation including the evanescent modes is given, and the nearfield measurement method is proposed. Validation experiment is conducted on a wide duct system, at which a part of the source plane is excited by an acoustic driver in the absence of airflow. Increasing the number of evanescent modes, the prediction of pressure spectrum becomes further precise, and it has less than -25 dB error with 26 converged evanescent modes within the Helmholtz number range of interest. By using the converged modal amplitudes, the source parameter distribution is restored, and the position of the driver is clearly identified at kR = 1. By applying the regularization technique to the restored result, the unphysical minor peaks at the source plane can be effectively suppressed with the filtering of the over-estimated pure radial modes.