• Title/Summary/Keyword: 입자유동가공

Search Result 21, Processing Time 0.022 seconds

A Study on the Analysis of Abrasive Flow Machining Using the Simulation of media Flow (미디어 유동 시뮬레이션을 이용한 입자유동가공의 해석에 관한 연구)

  • 김지웅
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.138-143
    • /
    • 1996
  • The 3-dimensional complex parts which construct automobile and aerospace parts are very difficult to polish by traditional polishing method. Abrasive flow machining is useful to polish an internal or external surface of the 3-dimensional shape part. In this paper media flow between workpiece and tooling part has been simulated and the charateristics of abrasive flow machining process have been analyzed according to various machining conditions by calculating the material removal and surface roughness.

  • PDF

High Temperature Deformation Behaviour of Particulate Reinforced Aluminium Composites (입자분산강화 알루미늄 복합재료의 고온거동에 관한 연구)

  • Gwon, Hyeok-Cheon;Yun, Ui-Park
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.765-774
    • /
    • 1995
  • The hot deformation behaviour of particulate reinforced aluminium 6061 Al composite were investigated by hot compression tests in the temperature range from 623K to 823K with strain rate of 10$^{-3}$ ~5.0 S$^{-1}$ . The effect of reinforced particulate volume fraction, mean diameter on the high temperature flow stress has also been studied. Experimental results showed that the increase in the volume fraction of reinforcement contributed to the rising of yield stress, but the stress above the yield point appeared to be steady state at all volume fractions. The apparent activation energy for deformation was 290KJ/mo1 for unreinforced 6061 Al, 327KJ/mo1 for 6061 Al-20vo1.% SiC composite and 531KJ/mo1 for 6061 Al-20vo1.%A1$_2$O$_3$composite. It appeared that $Al_2$O$_3$reinforced composites was more difficult to hot deform.

  • PDF

Simulation of the Particle Deposition on a Circular Cylinder in High-Temperature Particle-Laden Flow (원형 실린더 주위의 고온 유동에서 입자의 부착 해석)

  • Jeong, Seok-min;Kim, Dongjoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.73-81
    • /
    • 2019
  • Numerical simulations are performed for the thermal fluid flow around a circular cylinder, and the particle trajectories are calculated to investigate the particle motions and deposition characteristics. We aim to understand the effects of three important parameters (particle Stokes number, temperature difference in the flow and on the cylinder surface, and thermal conductivity ratio between the fluid and the particles) on the deposition efficiency. The results show that the thermophorectic effect is insignificant for particles with large Stokes numbers, but it affects particles with small Stokes numbers. The deposition efficiency increases with the increase in temperature difference between the flow and the cylinder or the decrease in ratio of thermal conductivity of the particles to the fluid. When thermophoresis becomes significant, the particles are deposited even on the back side of the cylinder.

Effect of Particle Size and Mixing Ratio on Quality of Fluidized Coated Vitamin C (입자크기와 혼합비에 따른 유동층 코팅 비타민 C의 품질 특성)

  • Park, Su-Jung;Hwang, Sung-Hee;Chung, Hun-Sik;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.14 no.4
    • /
    • pp.364-368
    • /
    • 2007
  • The purpose of this study was to improve the stability and the processing property of vitamin C. Vitamin C was coated according to particle size(80-100 mesh, 100-140 mesh) and mixing ratio(1:1.6, 1:2.5, 1:3(w/w)) with coating solution(8% Zein-DP, 6% HPMC-FCC), and then the quality characteristics of fluidized bed micro coated vitamin C were investigated. The coating efficiency and the thickness of coating film were higher in $80{\sim}100$ mesh particle than in $100{\sim}140$ mesh particles, and coating efficiency was decreased as the coating material was increased. The distribution range of particle was more narrow in mixing ratio of 1:3(w/w) than in the other. DPPH radical scavenging activity was not affected by the particle size and the mixing ratio. There was no difference between the coating materials in terms of the quality characteristics. The optimum coating condition for fluidized bed micro-coating of vitamin C powder was selected as the particle size of $80{\sim}100$ mesh and the mixing ratio with coating solution of 1:3(w/w).

Improvement of the Performance of the Supersonic Abrasive Blasting Nozzle (초음속 연마가공 노즐의 성능개선에 관한 연구)

  • Kwak, Ji-Young;Jeon, Ik-Jun;Park, Se-Eun;Lee, Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.9-15
    • /
    • 2016
  • The dynamics of gas-particle flow from a supersonic abrasive blasting nozzle have been studied by 1-D analytical calculation, including wall friction effects inside the nozzle. The developed code in the present study shows a satisfactory agreement with the other study's results. By utilizing the code, the redesign and optimization of the inner contour of a commercial abrasive blasting nozzle were carried out, and it was found that the redesigned nozzle in the present study can produce faster particle velocities at the nozzle exit by up to 22% compared with the original commercial nozzle.

Effect of Particle Shape for Powder Flow on Hopper Surface (호퍼 표면에서의 분말 유동에 대한 입자 형상의 영향)

  • Kang, Min-Chang;Bang, Sang-Wook;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.28-34
    • /
    • 2022
  • The flow at the top surface of the hopper is of particular industrial interest. Previously, the velocity distribution inside the hopper was predicted using the simple, void and spot models, which are equations for the particle flow field. However, because these equations cannot predict the velocity distribution at the top surface, a new equation has been recently proposed. This study employed the discrete element method with the changed shape of the particles. Based on the results, the shape of the particle had no effect on the discharge angle and shape of the velocity distribution; however, it greatly affected the size of the velocity distribution and bed thickness of the flowing particles. Therefore, in the future, it is necessary to modify the theoretical equation by considering the shape of the particles.

Effect of Rotating Speed and Air Flow Rate on Material Removal Characteristics in Abrasive Fluidized Bed Machining of Polyacetal (폴리아세탈의 입자유동베드 가공에서 회전속도와 공기 유량이 재료제거 특성에 미치는 영향)

  • Jang, Yangjae;Kim, Taekyoung;Hwang, Heondeok;Seo, Joonyoung;Lee, Dasol;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.33 no.5
    • /
    • pp.214-219
    • /
    • 2017
  • Abrasive fluidized bed machining (AFBM) is similar to general abrasive fluidized machining (AFM) in that it can perform polishing of the outer and inner surfaces of a 3-dimensional shape by the flow of particles. However, in the case of AFM, the shear force generated by the flow of the particles causes material removal, while in AFBM, the abrasive particles are suspended in the chamber to form a bed. AFBM can be used for deburring, polishing, edge contouring, shot peening, and cleaning of mechanical parts. Most studies on AFBM are limited to metals, and research on application of AFBM to plastic materials has not been performed yet. Therefore, in this study, we investigate the effect of rotating speed of the specimen and the air flow rate on the material removal characteristics during AFBM of polyacetal with a horizontal AFBM machine. The material removal rate (MRR) increases linearly with increase of the rotating speed of the main shaft because of the shear force between the particles of the fluidized bed and the rotation of the workpiece. The reduction in surface roughness tends to increase as the rotating speed of the main shaft increases. As the air flow rate increases, the MRR tends to decrease. At a flow rate of 70 L/min or more, the MRR remains almost constant. The reduction of the surface roughness of the specimen is found to decrease with increasing air flow rate.

Numerical Simulation on Dispersion of Fume Micro-Particles by Particle Suction Flows in Laser Surface Machining (입자 석션유동에 따른 레이저 표면가공의 마이크로 흄 오염입자 산포 특성 해석연구)

  • Kyoungjin Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.1-6
    • /
    • 2023
  • In CO2 laser surface machining of plastic films in modern display manufacturing, scattering of fume particles could be a major source of well-recognized film surface contamination. This computational fluid dynamics research investigates the suction air flow patterns over a film surface as well as the dispersion of micron-sized fume particles with low-Reynolds number particle drag model. The numerical results show the recirculatory flow patterns near laser machining point on film surface and also over the surface of vertical suction slot, which may hinder the efficient removal of fume particles from film surface. The dispersion characteristics of fume particles with various particle size have been tested systematically under different levels of suction flow intensity. It is found that suction removal efficiency of fume particles heavily depends on the particle size in highly nonlinear manners and a higher degree of suction does not always results in more efficient particle removal.

  • PDF

The Effect of Rheology Flow with Grain Size Controlled Material on Solid Particles Behavior (결정립 제어 소재의 레오로지 유동이 고상입자의 거동에 미치는 영향)

  • Jung Y. S.;Seo P. K.;Kang C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.351-359
    • /
    • 2005
  • The semi-solid processing is now becoming of great interest for the production of various parts by pressure die casting. Also, the rheo-casting has been substituted for thixo-casting, because the rheo-casting can control the solid particles to globular and non-dendritic solid phase. In the rheo-casting process, the important thing is to control the solid particles behavior in semi-solid materials. So in this paper, to control solid particles behavior in semi-solid materials, we experimented about the die filling tests during the semi-solid die casting in 0.3, 0.4, 0.5 and 0, 6 solid fraction. The die filling in semi-solid die casting were simulated by MAGMA soft/thixo module. By the die filling tests and computer simulation, the effect of solid particles behavior in rheology flow had been investigated.

Flow Characteristics of Dual Impinging Jets using PIV (PIV를 이용한 이중 충돌제트의 유동 특성)

  • Kim, Dong-Keon;Kwon, Soon-Hong;Chung, Sung-Won;Park, Jong-Min;Choi, Won-Sik;Kim, Jong-Soon;Kwon, Soon-Goo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.102-108
    • /
    • 2011
  • The flow characteristics of unventilated dual impinging jets were experimentally investigated. Two nozzles with an aspect ratio of 20 were separated by 6 nozzle widths. The Reynolds number based on nozzle width and nozzle exit velocity was set to 5,000. A Particle Image Velocimetry (PIV) was used to measure turbulent velocity components. It was found that, when an impingement plate was installed in the converging region, there was a stagnation region in the inner area between nozzles. However, when it was installed in the combined region, both jets were merged and collided into the plate, showing single-jet characteristics. In addition, at a dual impinging jet, as the distance between a nozzle and an impingement plate decreased, the spanwise turbulent intensity at the plate increased.