• Title/Summary/Keyword: 입자성장

Search Result 990, Processing Time 0.027 seconds

A Study on Synthesis of Mayenite by Using Recycled Aluminium Resource for Application in Insulating Material (알루미늄 재활용 소재를 이용한 내화재용 Mayenite 합성 연구)

  • Im, Byoungyong;Kang, Yubin;Joo, Soyeong;Kim, Dae-Guen
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.65-72
    • /
    • 2020
  • Black dross is a dark gray dross generated during the aluminum recycling process that uses flux, and contains NaCl, KCl, Al2O3, MgO, etc. Black dross is separated into soluble substances (NaCl, KCl) and insoluble substances (Al2O4, MgO) through the dissolution process. Soluble materials can be reused as salt flux, and Al2O3 and MgO can be upcycled to various ceramic materials through the synthesis process. In this study, Mayenite was synthesized using Al2O3 and MgO recovered from black dross, and the synthesis was performed according to the mixing ratio and reaction temperature. It was confirmed that when Mayenite was synthesized using black dross (spinel) and CaCO3, precursors were changed to Mg0.4Al2.4O4 and CaO at 700 ℃, and to Ca12Al14O33 (Mayenite) after 800 ℃. In the mixing conditions experiment, it was confirmed that the Mayenite XRD peak increased with increase of the CaCO3 content, and the Mg0.4Al2.4O4 XRD peak decreased. As a result of the BET analysis of the synthesized powder, the surface area decreased as the fine particles were grown and agglomerated in the process of generating mayenite.

Study on the Platinum Deposition in Membrane of Polymer Electrolyte Membrane Fuel Cell during Electrode Degradation Process (고분자전해질 연료전지의 전극 열화 과정에서 고분자막에 석출된 백금에 관한 연구)

  • Oh, Sohyeong;Gwon, Hyejin;Yoo, Donggeun;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.202-207
    • /
    • 2022
  • The study on electrode degradation of Proton Exchange Membrane Fuel Cell (PEMFC) was mainly studied on the particle growth and active area reduction of Pt on the electrode. The degradation of the electrode catalyst Pt in contact with the membrane affects the deterioration of the polymer membrane, but there are not many studies related to this. In this study, the phenomenon of the deposition of deteriorated Pt inside the polymer membrane during the accelerated electrode catalyst degradation test and its effects were studied. The voltage change (0.6 V ↔ 0.9 V) was repeated up to 30,000 cycles to accelerate the platinum degradation rate. When the voltage change cycle was repeated while oxygen was introduced into the cathode, the amount of Pt deposited inside the film was larger than when nitrogen was introduced. As the number of voltage change cycles increased, the amount of Pt deposited inside the membrane increased, and Pt dissolved in the cathode moved toward the anode, showing a uniform distribution throughout the membrane at 20,000 cycles. In the process of the accelerated electrode catalyst degradation test, the hydrogen crossover current density of the membrane did not change, and it was confirmed that the deposited Pt did not affect the durability of the membrane.

Electrochemical Performance of Rechargeable Lithium Battery Using Hybrid Solid Electrolyte (복합고체 전해질을 적용한 리튬이차전지의 전기화학적 특성)

  • Han, Jong Su;Yu, Hakgyoon;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.100-105
    • /
    • 2021
  • Recently, all-solid-state batteries have attracted much attention to improve safety of rechargeable lithium batteries, but the solid-state batteries of conductive ceramics or solid polymer electrolytes show poor electrochemical properties because of several problems such as high interfacial resistance and undesired reactions. To solve the problems of the reported all-solid-state batteries, a hybrid solid electrolyte is suggested, in this study, NASICON-type nanoparticle Li1.5Al0.5Ti1.5P3O12 (LATP) conductive ceramic, PVdF-HFP, and a carbonate-based liquid electrolyte were composited to prepare a quasi-solid electrolyte. The hybrid solid electrolyte has a high voltage stability of 5.6 V and shows an suppress effect of lithium dendrite growth in the stripping-plating test. The LiNi0.83Co0.11Mn0.06O2 (NCM811)-based battery with the hybrid solid electrolyte exhibits a high discharge capacity of 241.5 mAh/g at a high charge-cut-off voltage of 4.8V and stable electrochemical reaction. The NCM811-based battery also shows 139.4 mAh/g discharge capacity without short circuit or explosion at 90℃. Therefore, the LATP-based hybrid solid electrolyte can be an effective solution to improve the safety and electrochemical properties of rechargeable lithium batteries.

A Comparative Analysis of Keywords in Astronomical Journals and Concepts in Secondary School Astronomy Curriculum (최근 천문학 연구 키워드와 천체 분야 교육과정 내용 요소 비교 분석)

  • Shin, Hyeonjeong;Kwon, Woojin;Ga, Seok-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.2
    • /
    • pp.289-309
    • /
    • 2022
  • In recent years, astronomy has been snowballing: including Higgs particle discovery, black hole imaging, extraterrestrial exploration, and deep space observation. Students are also largely interested in astronomy. The purpose of this study is to discover what needs to be improved in the current astronomy curriculum in light of recent scientists' researches and discoveries. We collected keywords from all papers published from 2011 to 2020 in four selected journals-ApJ, ApJL, A&A, and MNRAS- by R package to examine research trends. The curriculum contents were extracted by synthesizing the in-service teachers' coding results in the 2015 revised curriculum document of six subjects (Science, Integrated Science, Earth Science I, Earth Science II, Physics II, Convergence Science). The research results are as follows: first, keywords that appear steadily in astronomy are 'galaxies: formation, galaxy: active, star: formation, accretion, method: numerical.' Second, astronomy curriculum includes all areas except the 'High Energy Astrophysical Phenomena' area within the common science curriculum learned by all students. Third, it is necessary to review the placement of content elements by subject and grade and to consider introducing new concepts based on astronomy research keywords. This is an exploratory study to compare curriculum and the field of scientific research that forms the basis of the subject. We expect to provide implications for a future revision of the astronomy curriculum as a primary ground investigation.

Comparison of Catalyst Support Degradation of PEMFC Electrocatalysts Pt/C and PtCo/C (PEMFC 전극촉매 Pt/C와 PtCo/C의 촉매 지지체 열화비교)

  • Sohyeong Oh;Yoohan Han;Minchul Chung;Donggeun Yoo;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.341-347
    • /
    • 2023
  • In PEMFC, PtCo/C alloy catalysts are widely used because of good performance and durability. However, few studies have been reported on the durability of carbon supports of PtCo/C evaluated at high voltages (1.0~1.5 V). In this study, the durability of PtCo/C catalysts and Pt/C catalysts were compared after applying the accelerated degradation protocol of catalyst support. After repeating the 1.0↔1.5V voltage change cycles, the mass activity, electrochemical surface area (ECSA), electric double layer capacitance (DLC), Pt dissolution and the particle growth were analyzed. After 2,000 cycles of voltage change, the current density per catalyst mass at 0.9V decreased by more than 1.5 times compared to the Pt/C catalyst. This result was because the degradation rate of the carbon support of the PtCo/C catalyst was higher than that of the Pt/C catalyst. The Pt/C catalyst showed more than 1.5 times higher ECSA reduction than the PtCo/C catalyst, but the corrosion of the carbon support of the Pt/C catalyst was small, resulting in a small decrease in I-V performance. In order to improve the high voltage durability of the PtCo/C catalyst, it was shown that improving the durability of the carbon support is essential.

Analysis of Organic Carbon Mass Balance in Daecheong Reservoir Using a Three-dimensional Numerical Model (3차원 수치 모델을 이용한 대청호 유기탄소 물질수지 해석)

  • Kim, Dong Min;An, In Kyung;Min, Kyug Seo;Chung, Se Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.62-62
    • /
    • 2021
  • 산업 고도화로 인하여 복잡하고 다양한 유기물의 사용량이 증가하였으며, 공공수역 내 새로운 오염물질이 유입됨에 따라 생화학적 산소요구량(BOD) 중심의 수질평가에 한계를 나타내었다. 이후 난분해성 물질을 고려한 유기물관리 정책과 총량관리의 필요성이 제기되었고 국내 하천과 호소에서는 총 유기탄소(TOC)를 유기물 관리지표로 설정하였다. 그러나 부영양 하천과 호소에서 TOC는 외부 부하뿐만아니라 식물플랑크톤의 과잉성장에 의해 증가할 수 있는 항목이므로 TOC 관리정책 추진을 위해서는 유기물의 기원에 대한 파악이 필요하다. 특히, 국내 하천에서 나타나고 있는 난분해성 유기물 오염도의 증가 추세에 대응한 실효성 있는 유기물 오염관리 정책을 수립하기 위해서는 다양한 유기물의 근원을 정확하게 파악하는 것이 매우 중요하다. 본 연구의 목적은 금강 수계 최대 상수원인 대청호를 대상으로 3차원 수리-수질 모델을 적용하여 유기탄소 성분 별 유입과 유출, 내부생성 및 소멸량을 평가하고 저수지시스템에서의 유기탄소 물질수지를 해석하는 데 있다. 유기탄소 물질수지 해석을 위해 AEM3D 모델을 사용하였으며 2017년을 대상으로 입력자료를 구축한 후 보정을 수행하였고 2018년을 대상으로 모델을 검정하였다. 모델은 유기탄소를 입자성, 용존성, 그리고 난분해성과 생분해성으로 구분하여 모의하며 유기물질 성상별 실험결과를 이용하여 입력자료를 구축하였다. 유기탄소 물질수지 해석을 위해 4가지의 탄소성분과 조류 세포 내 탄소의 질량 변화율을 계산하였다. 이를 위해 외부 유입·유출부하율, 수체 내 생성(일차생산, 재부상, 퇴적물과 수체 간 확산) 및 소멸률(POC 및 조류 침강, DOC 무기화, 탈질)을 고려하였다. 모델은 2017년과 2018년의 물수지를 적절히 재현하였으며 저수지의 성층구조를 잘 재현해내면서 전반적인 수온, 수질을 적절하게 모의하였다. 연간 TOC 부하량 중 내부기원 부하량은 2017년 68.4 %, 2018년은 높은 강우량의 영향으로 55.0%로 산정되었다. 내부 소멸 기작 중 침전으로 인한 손실이 가장 높은 것으로 나타났으며, 2017년과 2018년 각각 31.3%, 29.0%로 나타났다. TOC의 공간분포는 Chl-a 농도 분포와 유사하게 나타났으며, 댐 설치로 형성된 정체수역은 유역의 유기물 순환에 많은 영향을 미치는 것으로 평가되었다. TOC 관리 정책 기초자료 확보를 위해서는 향후 유역-저수지 시스템을 연계한 유기물 물질순환 심층 연구가 필요하다.

  • PDF

Effects of Changes in Accelerated Degradation Conditions for Catalyst Supports in Polymer Electrolyte Fuel Cell (고분자전해질 연료전지(PEMFC)에서 촉매 지지체 가속 열화 조건 변화의 영향)

  • Sohyeong Oh;Yuhan Han;Donggeun Yoo;Myoung Hwan Kim;Ji Young Park;Youngjin Choi;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.7-12
    • /
    • 2024
  • The durability of the catalyst support has a significant effect on the durability of proton exchange membrane fuel cells (PEMFC). The accelerated durability evaluation of the catalyst support is performed at a high voltage (1.0 to 1.5 V), and the catalyst and ionomer binder in the catalyst layer are also deteriorated, hindering the evaluation of the durability of the support. The existing protocol (DOE protocol) was improved to find conditions in which the support, which is a durability evaluation target, deteriorates further. A protocol (MDOE) was developed in which the relative humidity was lowered by 35% and the number of voltage changes was reduced. After repeating the 1.0 ↔ 1.5 V voltage change cycle, the catalyst mass activitiy (MA), electrochemical active area (ECSA), electrical double layer capacity (DLC), Pt dissolution and particle growth were analyzed. Reaching 40% reduction in mass activity, the MDOE protocol took only 500 cycles, reducing the number of voltage changes compared to the DOE method and increasing the degradation of the carbon support by 50% compared to the DOE protocol.

Luminescence properties of $(Y,\;Zn)_2O_3$:$Eu^{3+}$ red phosphor as the effect of Zn ion (Zn ion의 영향에 따른 $(Y,\;Zn)_2O_3$:$Eu^{3+}$ 적색 형광체의 발광특성)

  • Song, Y.H.;Moon, J.W.;Park, W.J.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.253-257
    • /
    • 2008
  • To enhance the luminescence properties, the red phosphor composed of $(Y,\;Zn)_2O_3$:$Eu^{3+}$ as doping concentration of Zn ion is synthesized at $1200^{\circ}C$ for 6 hrs in air atmosphere by conventional solid reaction method. As a result of the red phosphor $(Y,\;Zn)_2O_3$:$Eu^{3+}$ is measured X-ray diffraction (XRD), The main peak is nearly corresponded to the same as JCPDS card (No. 41-1105). When the doping concentration of Zn ion is more than 5 mol%, However, the ZnO peak is showed by XRD analysis. Therefore, when the doping concentration of Zn ion is less than 5 mol%, the Zn ion is well mixed in $Y_2O_3$ structure without the impurity phases. The photoluminescence (PL) properties is shown as this phosphor is excited in 254 nm region and the highest emission spectra of $(Y,\;Zn)_2O_3$:$Eu^{3+}$ has shown in 612 nm region because of a typical energy transition ($^5D_0{\rightarrow}^7F_2$) of $Eu^{3+}$ ion. As the doping concentration of Zn ion is more than 10 mol%, the emission peak is suddenly decreased. when the highest emission peak as doping concentration of Zn ion is shown, the composition of this phosphor is $(Y_{0.95},\;Zn_{0.05})_2O_3$:$Eu^{3+}_{0.075}$ and the particle size analyzed by FE-SEM is confirmed from 0.4 to $3{\mu}m$.

Petrology of Host Body of Feldspar Deposits in Jechon Ganites (장석광상 모암인 제천반상화강암의 암석학적 특성)

  • Lee, Han-Yeang;Kim, Dai-Oap;Park, Joong-Kwon
    • Journal of the Korean earth science society
    • /
    • v.22 no.5
    • /
    • pp.405-414
    • /
    • 2001
  • Jecheon granite can be divided into two types; porphyritic granite (K-feldspar megacryst bearing) and medium-grained biotite granite. Porphyritic granite, host body of feldspar deposits, is 8${\sim}$11 km in diameter and about 80 $km^{2}$ in area. It mainly contains K-feldspar, plagioclase, biotite and quartz, and magnetite, zircon, sphene and apatite are accessary minerals. Enclosed minerals in K-feldspar megacryst with 3${\sim}$10 cm in diameter are hornblende, plagioclase, quartz, magnetite, apatite, sphene and zircon. Mafic enclaves mainly consisting of hornblende, plagioclase and quartz are frequently observed in porphrytic granite. Medium-grained biotite granite consists of K-feldspar, plagioclase, biotite and hornblende as main, and hematite, muscovite, apatite and zircon as accessary minerals. Core and rim An contents of plagioclase from porphyritic granite, medium biotite granite, K-feldspar megacryst, and mafic enclave are 36 and 21, 40 and 32, 37 and 32, and 43 and 36, respectively. $X_{Fe}$ values of hornblende are 0.57 at biotite granite, 0.51 at K-feldspar mehacryst and 0.45 at mafic enclave. $X_{Fe}$ values of biotite and hornblende are homogeneous without chemical zonation. K-feldspar megacryst shows end member of pure composition with exsolved thin lamellar pure albites. Characteristics of mineral compositions and petrography indicate porphyritic granite is igneous origin and medium-grained biotite granite comes from the same source of magma; biotite granite is initiated to solidly and from residual melt porphyritic granite can be formed. Possibly K-feldspar megacrysts are formde under H$_{2}$O undersaturation condition and near K-feldspar solidus curve temperature; growth rate is faster than nucleation rate. Mafic enclaves are thought to be mingled mafic magma in felsic magma, which is formed from compositional stratigraphy. Estimated equilibrium temperature and pressure for medium-grained biotite granite are about $800^{\circ}C$ and 4.83${\sim}$5.27 Kb, respectively.

  • PDF

Evaluation of Soybean Meal as a Partial Substitute for Fish Meal in Formulated Diets for Korean Rockfish, Sebastes schlegeli (조피볼락 사료의 어분 대체 단백원으로서 대두박 평가)

  • LEE Sang-Min;JEON Im-Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.5
    • /
    • pp.586-594
    • /
    • 1996
  • This study was designed to determine the level of soybean meal (SM) that could be substituted for fish meal in the diet for Korean rockfish (Sebastes schlegeli). A control diet with white fish meal as only protein source was included, SM was substituted at levels of $5\%,\;10\%,\;15\%,\;and\;20\%$ for portions of the fish meal in the diet. Amino acids (met+lys) supplementation and two different SM particle sizes (0.5 mm and 0.25 mm) in the $20\%$ SM diet were compared. In addition, combination of $10\%$ SM, $10\%$ corn gluten meal (CGM) and $10\%$ meat and bone meal (MBM) was substituted for the fish meal in the diet. Duplicate groups of the 30 fish averaging 22.9 g were fed one of 8 isoproteic $(48\%)$and isolipidic $(7.5\%)$ experimental diets to satiation twice a day for 9 weeks. No significant differences were found among fish fed the control, substituting up to $20\%\;SM,\;20\%$ SM containing amino acids, and $10\%\;SM+10\%\;CGM+10\%$ MBM diets in weight gain, feed efficiency, daily feed intake, and protein retention (P>0.05). Feed efficiency, daily feed intake and protein retention in fish fed the diet containing $20\%$ SM with 0.5 mm particle size were not significantly different to those in fish fed the diets containing less than $20\%\;SM\;(P>0.05)$, however, weight gain was significantly lower than that of the control and $5\%\;SM\;diets\;(P<0.05)$. It is concluded that SM ran be used as a partial substitute for fish meal up to $20\%$ in the diet, and that the inclusion of SM with an adequate combination of several protein sources can replace larger amounts of fish meal in the diet.

  • PDF