• Title/Summary/Keyword: 입자군집 최적화

Search Result 86, Processing Time 0.029 seconds

Comparing between particle swarm optimization and differential evolution in bargaining game (교섭게임에서 입자군집최적화와 차분진화알고리즘 비교)

  • Lee, Sangwook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.55-56
    • /
    • 2015
  • 근래에 게임이론 분야에서 진화계산 기법을 사용한 분석은 중요한 이슈이다. 본 논문에서는 교섭게임에서 입자군집최적화와 차분진화알고리즘 간의 공진화 과정을 관찰하고 상호 경쟁에서 얻는 이득을 비교하여 두 알고리즘의 성능을 분석한다. 실험결과 입자군집최적화가 차분진화알고리즘에 비해 교섭게임에서 더 우수한 성능을 보임을 확인하였다.

  • PDF

Modified Binary Particle Swarm Optimization using Genotype-Phenotype Concept (Version 2) (유전자형-표현형 개념을 적용한 수정된 이진 입자군집최적화 (버전 2))

  • Lim, Seungkyun;Lee, Sangwook
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.541-548
    • /
    • 2014
  • In this paper, we introduce a second version of modified binary particle swarm optimization using a concept of genotype-phenotype in genetic algorithms. Particle swarm optimization uses an information of difference between a position of the best solution and one's own position in the process of searching optimum. To obtain this difference of positions, the first version of modified binary particle swarm optimization uses a phenotype but the proposed second version uses a genotype. We can represent the solution space in large search space by using a genotype which provides continuous whole space as search space compared to a phenotype which provides only binary information. Experimental results in 10 De Jong benchmark function show that the second version outperforms the first version in six functions which has a broad search space and many local optima.

Statistical Analysis of Receding Horizon Particle Swarm Optimization for Multi-Robot Formation Control (다개체 로봇 편대 제어를 위한 이동 구간 입자 군집 최적화 알고리즘의 통계적 성능 분석)

  • Lee, Seung-Mok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.115-120
    • /
    • 2019
  • In this paper, we present the results of the performance statistical analysis of the multi-robot formation control based on receding horizon particle swarm optimization (RHPSO). The formation control problem of multi-robot system can be defined as a constrained nonlinear optimization problem when considering collision avoidance between robots. In general, the constrained nonlinear optimization problem has a problem that it takes a long time to find the optimal solution. The RHPSO algorithm was proposed to quickly find a suboptimal solution to the optimization problem of multi-robot formation control. The computational complexity of the RHPSO increases as the number of candidate solutions and generations increases. Therefore, it is important to find a suboptimal solution that can be used for real-time control with minimal candidate solutions and generations. In this paper, we compared the formation error according to the number of candidate solutions and the number of generations. Through numerical simulations under various conditions, the results are analyzed statistically and the minimum number of candidate solutions and the minimum number of generations of the RHPSO algorithm are derived within the allowable control error.

Application of Resampling Method based on Statistical Hypothesis Test for Improving the Performance of Particle Swarm Optimization in a Noisy Environment (노이즈 환경에서 입자 군집 최적화 알고리즘의 성능 향상을 위한 통계적 가설 검정 기반 리샘플링 기법의 적용)

  • Choi, Seon Han
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.21-32
    • /
    • 2019
  • Inspired by the social behavior models of a bird flock or fish school, particle swarm optimization (PSO) is a popular metaheuristic optimization algorithm and has been widely used from solving a complex optimization problem to learning a artificial neural network. However, PSO is difficult to apply to many real-life optimization problems involving stochastic noise, since it is originated in a deterministic environment. To resolve this problem, this paper incorporates a resampling method called the uncertainty evaluation (UE) method into PSO. The UE method allows the particles to converge on the accurate optimal solution quickly in a noisy environment by selecting the particles' global best position correctly, one of the significant factors in the performance of PSO. The results of comparative experiments on several benchmark problems demonstrated the improved performance of the propose algorithm compared to the existing studies. In addition, the results of the case study emphasize the necessity of this work. The proposed algorithm is expected to be effectively applied to optimize complex systems through digital twins in the fourth industrial revolution.

A Study on Feature Selection in Face Image Using Principal Component Analysis and Particle Swarm Optimization Algorithms (PCA와 입자 군집 최적화 알고리즘을 이용한 얼굴이미지에서 특징선택에 관한 연구)

  • Kim, Woong-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1857_1858
    • /
    • 2009
  • 본 논문에서는 PCA와 입자 군집 최적화 알고리즘을 이용한 얼굴이미지에서 특징선택 방법에 대하여 제안한다. 2차원 얼굴이미지의 히스토그램 분표값에서 정규화합 연산을 이용한 히스토그램 평활화 기법을 거쳐 대비효과를 주어 화질을 개선시켜 준다. PCA는 2차원 얼굴이미지를 이용하여 공분산 행렬을 구한 후 그것의 고유값에 따른 고유벡터를 구하여 얼굴인식에 사용될 특징 벡터들을 추출한다. 또한 추출된 특징벡터 중에서 얼굴인식 성능에 중요한 요소가 되는 특징 벡터들을 입자 군집 최적화 알고리즘을 이용하여 최적화한다. 다항식 기반 RBF 신경회로망을 사용하여 얼굴인식 성능을 평가한다. 본 논문에서 제안된 방법을 통해 최적화된 특징벡터와 얼굴인식률과의 관계를 알 수 있다.

  • PDF

A Study on the Stochastic Optimization of Binary-response Experimentation (이항 반응 실험의 확률적 전역최적화 기법연구)

  • Donghoon Lee;Kun-Chul Hwang;Sangil Lee;Won Young Yun
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.1
    • /
    • pp.23-34
    • /
    • 2023
  • The purpose of this paper is to review global stochastic optimization algorithms(GSOA) in case binary response experimentation is used and to compare the performances of them. GSOAs utilise estimator of probability of success $\^p$ instead of population probability of success p, since p is unknown and only known by its estimator which has stochastic characteristics. Hill climbing algorithm algorithm, simple random search, random search with random restart, random optimization, simulated annealing and particle swarm algorithm as a population based algorithm are considered as global stochastic optimization algorithms. For the purpose of comparing the algorithms, two types of test functions(one is simple uni-modal the other is complex multi-modal) are proposed and Monte Carlo simulation study is done to measure the performances of the algorithms. All algorithms show similar performances for simple test function. Less greedy algorithms such as Random optimization with Random Restart and Simulated Annealing, Particle Swarm Optimization(PSO) based on population show much better performances for complex multi-modal function.

The Strategies for Exploring Various Regions and Recognizing Local Minimum of Particle Swarm Optimization (PSO의 다양한 영역 탐색과 지역적 미니멈 인식을 위한 전략)

  • Lee, Young-Ah;Kim, Tack-Hun;Yang, Sung-Bong
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.319-326
    • /
    • 2009
  • PSO(Particle Swarm Optimization) is an optimization algorithm in which simple particles search an optimal solution using shared information acquired through their own experiences. PSO applications are so numerous and diverse. Lots of researches have been made mainly on the parameter settings, topology, particle's movement in order to achieve fast convergence to proper regions of search space for optimization. In standard PSO, since each particle uses only information of its and best neighbor, swarm does not explore diverse regions and intended to premature to local optima. In this paper, we propose a new particle's movement strategy in order to explore diverse regions of search space. The strategy is that each particle moves according to relative weights of several better neighbors. The strategy of exploring diverse regions is effective and produces less local optimizations and accelerating of the optimization speed and higher success rates than standard PSO. Also, in order to raise success rates, we propose a strategy for checking whether swarm falls into local optimum. The new PSO algorithm with these two strategies shows the improvement in the search speed and success rate in the test of benchmark functions.

Observation of Bargaining Game using Co-evolution between Particle Swarm Optimization and Differential Evolution (입자군집최적화와 차분진화알고리즘 간의 공진화를 활용한 교섭게임 관찰)

  • Lee, Sangwook
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.549-557
    • /
    • 2014
  • Recently, analysis of bargaining game using evolutionary computation is essential issues in field of game theory. In this paper, we observe a bargaining game using co-evolution between two heterogenous artificial agents. In oder to model two artificial agents, we use a particle swarm optimization and a differential evolution. We investigate algorithm parameters for the best performance and observe that which strategy is better in the bargaining game under the co-evolution between two heterogenous artificial agents. Experimental simulation results show that particle swarm optimization outperforms differential evolution in the bargaining game.

Analysis on Iterated Prisoner's Dilemma Game using Binary Particle Swarm Optimization (이진 입자 군집 최적화를 이용한 반복 죄수 딜레마 게임 분석)

  • Lee, Sangwook
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.12
    • /
    • pp.278-286
    • /
    • 2020
  • The prisoner's dilemma game which is a representative example of game theory is being studied with interest by many economists, social scientists, and computer scientists. In recent years, many researches on computational approaches that apply evolutionary computation techniques such as genetic algorithms and particle swarm optimization have been actively conducted to analyze prisoner dilemma games. In this study, we intend to evolve a strategy for a iterated prisoner dilemma game participating two or more players using three different binary particle swarm optimization techniques. As a result of experimenting by applying three kinds of binary particle swarm optimization to the iterated prisoner's dilemma game, it was confirmed that mutual cooperation can be established even among selfish participants to maximize their own gains. However, it was also confirmed that the more participants, the more difficult to establish a mutual cooperation relationship.

PSO-SAPARB Algorithm applied to a VTOL Aircraft Longitudinal Dynamics Controller Design and a Study on the KASS (수직이착륙기 종축 제어기 설계에 적용된 입자군집 최적화 알고리즘과 KASS 시스템에 대한 고찰)

  • Lee, ByungSeok;Choi, Jong Yeoun;Heo, Moon-Beom;Nam, Gi-Wook;Lee, Joon Hwa
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.12-19
    • /
    • 2016
  • In the case of hard problems to find solutions or complx combination problems, there are various optimization algorithms that are used to solve the problem. Among these optimization algorithms, the representative of the optimization algorithm created by imitating the behavior patterns of the organism is the PSO (Particle Swarm Optimization) algorithm. Since the PSO algorithm is easily implemented, and has superior performance, the PSO algorithm has been used in many fields, and has been applied. In particular, PSO-SAPARB (PSO with Swarm Arrangement, Parameter Adjustment and Reflective Boundary) algorithm is an advanced PSO algorithm created to complement the shortcomings of PSO algorithm. In this paper, this PSO-SAPARB algorithm was applied to the longitudinal controller design of a VTOL (Vertical Take-Off and Landing) aircraft that has the advantages of fixed-wing aircraft and rotorcraft among drones which has attracted attention in the field of UAVs. Also, through the introduction and performance of the Korean SBAS (Satellite Based Augmentation System) named KASS (Korea Augmentation Satellite System) which is being developed currently, this paper deals with the availability of algorithm such as the PSO-SAPARB.