• Title/Summary/Keyword: 입사각

Search Result 823, Processing Time 0.029 seconds

Kilohertz Gain-Switched Ti:sapphire Laser Operation and Femtosecond Chirped-Pulse Regenerative Amplification (KHz 반복률에서의 Ti:sapphire 이득 스위칭 레이저 발진과 펨토초 처프펄스 재생 증폭)

  • Lee, Yong-In;Ahn, Yeong-Hwan;Lee, Sang-Min;Seo, Min-Ah;Kim, Dai-Sik;Rotermund, Fabian
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.556-563
    • /
    • 2006
  • We present a comprehensive study of a chirped pulse Ti:sapphire regenerative amplifier system operating at 1 kHz. Main constituents of the system are described in detail. The amplifier stage was first converted to a repetition rate-tunable kHz gain-switched nanosecond Ti:sapphire laser. Operation characteristics at different repetition rates such as build-up times of laser pulses, pump power-dependent output powers and pulse durations, damage thresholds, and tunability ranges were studied. Based on the results achieved, the switching time of the Pocket's cell used and the round trip numbers in the regenerative amplifier were optimized at 1 kHz. The output pulses with a pulse width of 50fs from a home-made Ken lens mode-locked Ti:sapphire oscillator were used as seed pulses. The pulses were expanded to 120ps in a grating stretcher prior to coupling into the 3-mirror amplifier cavity. After amplification and recompression, a stable 1kHz Ti:sapphire regenerative amplifier system, which delivers 85-fs, $320-{\mu}J$ pulses, was fully constructed.

Three-dimensional Machine Vision System based on moire Interferometry for the Ball Shape Inspection of Micro BGA Packages (마이크로 BGA 패키지의 볼 형상 시각검사를 위한 모아레 간섭계 기반 3차원 머신 비젼 시스템)

  • Kim, Min-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.81-87
    • /
    • 2012
  • This paper focuses on three-dimensional measurement system of micro balls on micro Ball-Grid-Array(BGA) packages in-line. Most of visual inspection system still suffers from sophisticate reflection characteristics of micro balls. For accurate shape measurement of them, a specially designed visual sensor system is proposed under the sensing principle of phase shifting moire interferometry. The system consists of a pattern projection system with four projection subsystems and an imaging system. In the projection system, four subsystems have spatially different projection directions to make target objects experience the pattern illuminations with different incident directions. For the phase shifting, each grating pattern of subsystem is regularly moved by PZT actuator. To remove specular noise and shadow area of BGA balls efficiently, a compact multiple-pattern projection and imaging system is implemented and tested. Especially, a sensor fusion algorithm to integrate four information sets, acquired from multiple projections, into one is proposed with the basis of Bayesian sensor fusion theory. To see how the proposed system works, a series of experiments is performed and the results are analyzed in detail.

Mapping Solar Photovoltaic Energy Resource Using LiDAR Data (LiDAR Data를 이용한 태양광에너지 자원도 제작)

  • Kim, Kwang-Deuk;Yun, Chang-Yeol;Jo, Myung-Hee;Kim, Sung-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.148-157
    • /
    • 2012
  • Recently, people are getting more interested in green energy resource and environment friendly energy resource due to the lack of energy and global warming. This study produced a solar energy resource map using LiDAR(Light Detection And Ranging) data to check if it is utilized for spatial information technology and solar energy sectors that people pay more attentions to as new recycling energy. This study assigned Ulleungdo(Island) located in Gyeongsangbuk-do as a target area. This study created the contour line with 1 meter by newly photographing LiDAR and data processing. And using this contour line, this study built DEM(Digital Elevation Model) data with 1 meter. The incidence range depending on the altitude and azimuth of sun using DEM data is used to evaluate solar energy resource. This is expected to suggest an accurate method to evaluate more reliable and more precise information of new recycling energy resource by producing solar energy resource map based on accurate and precise spatial resolution data with 1 meter level.

Design of Multilayer Radome with Particle Swarm Optimization (Particle Swarm Optimization을 이용한 다층 구조 레이돔 설계)

  • Lee, Kyung-Won;Hong, Ic-Pyo;Park, Beom-Jun;Chung, Yeong-Chul;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.744-751
    • /
    • 2010
  • In this paper, the design of multilayer radome within, the insertion loss, -0.3 dB in X-band with PSO was carried out based on two cases. The first is that, deciding material constant of skin and core, each layer thickness of c-sandwich radome with PSO is found and the second is that, deciding material constant and thickness of the skins of both sides, the material constant and thickness of three layers between skins of both sides using PSO is decided. The performance of the designed radome almost agreed with the required performance. It was showed that the radome design applying PSO algorithm is easy and fast and the optimum radome is also designed in combination of the various parameters of radome. From these results, the radome having various performance can be designed except the tedious calculation and also be applied to various radome structure.

Numerical Simulation for Tsunami Force Acting on Onshore Bridge (for Solitary Wave) (연안교량에 작용하는 지진해일파력에 관한 수치시뮬레이션(고립파의 경우))

  • Lee, Kwang-Ho;Woo, Kyung-Hwan;Kim, Do-Sam;Jeong, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.92-108
    • /
    • 2017
  • Present work shows a numerical method to analysis of interaction analysis between solitary wave and onshore bridge. Numerical simulation is carried out by TWOPM-3D (three-dimensional one-field model for immiscible two-phase flows), which is based on Navier-Stokes solver. To do this, the solitary wave is generated numerically in numerical wave channel, and numerical results and experimental results were compared and analyzed in order to verify the applicability of force acting on an onshore bridge. From this, we discussed precisely the characteristics of horizontal and vertical forces (uplift and downward forces) changes including water level and velocity changes due to the variation of solitary wave height, water depth, onshore bridge's location and type, and number of girder. Furthermore, It is revealed that the maximum horizontal and vertical forces acting on the girder bridge show different varying properties according to the number of girder, although each maximum force acting on the girder bridge is proportional to the increasement of incident solitary wave height, and the entrained air in the fluid flow affects the vertical force highly.

A Study on the Entry Path of Institute of the Translation of Korean Classics (한국고전번역원 번역인력의 진입경로에 대한 연구 - 2013년~2017년 번역인력을 중심으로 -)

  • Kwon, Kyongsoon
    • (The)Study of the Eastern Classic
    • /
    • no.71
    • /
    • pp.259-304
    • /
    • 2018
  • In this paper, we analyzed and analyzed the entry path and the capacity of translation competent personnel who participated in the translation project for the last 5 years. For this purpose, the entry path of the translation workforce is classified as 'employee', 'research course', 'vt', and 'external expert'. And the number of manpower and the amount of translated manuscripts were examined by year. In addition, the average amount of manpower for one translator was also examined. As a result of the research and analysis, the proportion of the total translation companies in the translation business was in the order of external experts - from the research course - from the qualification examination - from the staff. The proportion of manuscripts is in the order of from the research course - external expert - from the qualification examination - from the staff. In addition, we surveyed and analyzed the present status of each of the translators and discussed the characteristics and problems of each business sector. In the translation of historical documents, the proportion of manpower is the largest in the research process, but the proportion of manuscripts is the highest in the qualification test, and that of the experts in the translation and special classics is significant. In addition, it was judged that translation work of translator was proceeding inefficiently by analyzing average manpower quantity of translation worker. In order to solve these problems, three plans were proposed: 'Need to plan the use of translation personnel based on business plan', 'Improvement of qualification examination for cross-country and translation committee members', 'Training of translation experts in specialized fields and expansion of entry routes'. Each of these measures must be validated and validated through detailed analysis and research. However, it is hoped that the translator will help the translation project by establishing a more systematic and planned business plan and a plan to utilize the translation workforce.

GEO-KOMPSAT-2 Laser Ranging Time Slot Analysis (정지궤도복합위성 레이저 레인징 가능 시간대 해석)

  • Park, Bongkyu;Choi, Jaedong;Lee, Sang-Ryool
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.10-16
    • /
    • 2018
  • In 2018 and 2019, GEO-KOMPSAT-2A and GEO-KOMPSAT-2B will be launched in order to succeed the COMS mission. The two satellites will be collocated in $128.25{\pm}0.05$ degrees East. For precise ranging and orbit determination, the GEO-KOMPSAT-2B will be equipped with LRA (Laser Retroreflector Assembly) and SLR (Satellite Laser Ranging) systems will be utilized. This systems are located in Geochang. In this case, the laser beam emitted from the SLR station can cause problems in terms of safety of optical payloads and image quality. As a solution of this possibility, the laser ranging will be done during the night time when the shutters of the optical payloads remain closed. Still, the optical payload of the GEO-KOMPSAT-2A is not safe from the laser beam because its optical payload shall continue its mission for 24 hours a day. In order to handle this problem, the laser ranging shall be limited to time slots when the angular distance between two satellites observed from the Geochang SLR station is large enough. In this paper, through orbit simulations, the characteristics of variation of the angular distance between the two satellites is analyzed to figure out the time slots when laser ranging is allowed.

Design of Gamma Camera with Diverging Collimator for Spatial Resolution Improvement (공간분해능 향상을 위한 확산형 콜리메이터 기반의 감마카메라 설계)

  • Lee, Seung-Jae;Jang, Yeongill;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.661-666
    • /
    • 2019
  • Diverging collimators is used to obtain reduced images of an object, or to detect a wide filed-of-view (FOV) using a small gamma camera. In the gamma camera using the diverging collimators, the block scintillator, and the pixel scintillator array, gamma rays are obliquely incident on the scintillator surface when the source is located the periphery of the FOV. Therefore, the spatial resolution is reduced because it is obliquely detected in depth direction. In this study, we designed a novel system to improve the spatial resolution in the periphery of the FOV. Using a tapered crystal array to configure the scintillation pixels to coincide with the angle of the collimator's hole allows imaging to one scintillation pixel location, even if events occur to different depths. That is, even if is detected at various points in the diagonal direction, the gamma rays interact with one crystal pixel, so resolution does not degrade. The resolution of the block scintillator and the tapered crystal array was compared and evaluated through Geant4 Application for Tomographic Emission (GATE) simulation. The spatial resolution of the obtained image was 4.05 mm in the block scintillator and 2.97 mm in the tapered crystal array. There was a 26.67% spatial resolution improvement in the tapered crystal array compared to the block scintillation.

Change of Proton Bragg Peak by Variation of Material Thickness in Head Phantom using Geant4 (Geant4 전산모사를 이용한 두개골 팬텀의 물질 두께 변동에 따른 양성자 브래그 피크의 위치 변화)

  • Kim, You Me;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.401-408
    • /
    • 2021
  • Proton therapy using the Bragg peak is one of the radiation therapies and can deliver its maximum energy to the tumor with giving least energy for normal tissue. A cross-sectional image of the human body taken with the computed tomography (CT) has been used for radiation therapy planning. The HU values change according to the tube voltage, which lead to the change in the boundary and thickness of the anatomical structure on the CT image. This study examined the changes in the Bragg peak of the brain region according to the thickness variation in the head phantom composed of several materials using the Geant4. In the phantom composed of a single material, the Bragg peak according to the type of media and the incident energy of the proton beams were calculated, and the reliability of Geant4 code was verified by the Bragg peak. The variation of the peak in the brain region was examined when each thickness of the head phantom was changed. When the thickness of the soft tissue was changed, there was no change in the peak position, and for the skin the change in the peak was small. The change of the peak position was mainly changed when the bone thickness. In particular, when the bone was changed only or the bone was changed together with other tissues, the amount of change in the peak position was the same. It is considered that measurement of the accurate bone thickness in CT images is one of the key factors in depth-dose distribution of the radiation therapy planning.

Deep Learning Applied Method for Acquisition of Digital Position Signal of PET Detector (PET 검출기의 디지털 위치 신호 측정을 위한 딥러닝 적용 방법)

  • Byungdu, Jo;Seung-Jae, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.697-702
    • /
    • 2022
  • For imaging in positron emission tomography(PET), it is necessary to measure the position of the scintillation pixel interacting with the gamma rays incident on the detector. To this end, in the conventional system, a flood image of the scintillation pixel is obtained, the imaged area of each scintillation pixel is separated, and the position of the scintillation pixel is specified and acquired as a digital signal. In this study, a deep learning method was applied based on the signal formed by the photosensor of the detector, and a method was developed to directly acquire a digital signal without going through various procedures. DETECT2000 simulation was performed to verify this and evaluate the accuracy of position measurement. A detector was constructed using a 6 × 6 scintillation pixel array and a 4 × 4 photosensor, and a gamma ray event was generated at the center of the scintillation pixel and summed into four channels of signals through the Anger equation. After training the deep learning model using the acquired signal, the positions of gamma-ray events that occurred in different depth directions of the scintillation pixel were measured. The results showed accurate results at every scintillation pixel and position. When the method developed in this study is applied to the PET detector, it will be possible to measure the position of the scintillation pixel with a digital signal more conveniently.