Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.5
/
pp.600-608
/
2020
Machine learning constructs an objective function from learning data, and predicts the result of the data generated by checking the objective function through test data. In machine learning, input data is subjected to a normalisation process through a preprocessing. In the case of numerical data, normalization is standardized by using the average and standard deviation of the input data. In the case of nominal data, which is non-numerical data, it is converted into a one-hot code form. However, this preprocessing alone cannot solve the problem. For this reason, we propose a method that uses ontology to normalize input data in this paper. The test data for this uses the received signal strength indicator (RSSI) value of the Wi-Fi device collected from the mobile device. These data are solved through ontology because they includes noise and heterogeneous problems.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.6
/
pp.374-382
/
2020
The purpose of this study is to improve the learning speed of an ammunition stockpile reliability classification artificial neural network model by proposing a normalization method that reduces the number of input variables based on the characteristic of Ammunition Stockpile Reliability Program (ASRP) data without loss of classification performance. Ammunition's performance requirements are specified in the Korea Defense Specification (KDS) and Ammunition Stockpile reliability Test Procedure (ASTP). Based on the characteristic of the ASRP data, input variables can be normalized to estimate the lot percent nonconforming or failure rate. To maintain the unitary hypercube condition of the input variables, min-max normalization method is also used. Area Under the ROC Curve (AUC) of general min-max normalization and proposed 2-step normalization is over 0.95 and speed-up for marching learning based on ASRP field data is improved 1.74 ~ 1.99 times depending on the numbers of training data and of hidden layer's node.
The back-propagation neural network (BPN) has long been successfully applied in bankruptcy prediction problems. Despite its wide application, some major issues must be considered before its use, such as the network topology, learning parameters and normalization methods for the input and output vectors. Previous studies on bankruptcy prediction with BPN have shown that many researchers are interested in how to optimize the network topology and learning parameters to improve the prediction performance. In many cases, however, the benefits of data normalization are often overlooked. In this study, a genetic algorithm (GA)-based normalization transform, which is defined as a linearly weighted combination of several different normalization transforms, will be proposed. GA is used to extract the optimal weight for the generalization. From the results of an experiment, the proposed method was evaluated and compared with other methods to demonstrate the advantage of the proposed method.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.283-285
/
2023
이상 탐지는 데이터에서 일반적인 범주에서 크게 벗어나는 인스턴스 또는 패턴을 식별하는 중요한 작업이다. 본 연구에서는 시계열 데이터의 특징 추출을 위한 비지도 학습 기반 방법과 정규화 흐름의 결합을 통한 이상 탐지 프레임워크를 제안한다. 특징 추출기는 1차원 합성곱 신경망 기반의 오토인코더로 구성되며, 정상적인 시퀀스로만 구성된 훈련 데이터를 압축하고 복원하는 과정을 통해 최적화된다. 추출된 시계열 데이터의 특징 맵은 가능도를 최대화하도록 훈련된 정규화 흐름의 입력으로 사용된다. 이와 같은 방식으로 훈련된 이상 탐지 시스템은 테스트 샘플에 대한 이상치를 계산하며, 최종적으로 임계값과의 비교를 통해 이상 여부를 예측한다. 성능 평가를 위해 시계열 이상 탐지를 위한 공개 데이터셋을 이용하여 공정하게 이상 탐지 성능을 비교하였으며, 실험 결과는 제안하는 정규화 흐름 기법이 시계열 이상 탐지 시스템에 활용될수 있는 잠재성을 시사한다.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.644-647
/
2013
인터넷과 정보기술의 발전으로 정보시스템들이 보편화 되고, 편리함을 제공하고 있다. 반면에 시스템은 더욱 복잡해지고, 프라이버시 침해, 개인정보 수집 등 사이버공격은 계속적으로 증가하고 있으며 이로 인한 피해가 심각하다. 사이버 공격을 예방하기 위해서는 정보시스템 제품출시 이전 단계에서 제품의 보안 취약점을 제거하는 것이 중요하다. 따라서 개발단계부터 보안을 고려한 소프트웨어를 개발하는 것은 향후 발생 가능한 보안취약점을 예방하고 피해를 최소화 하여 보다 안전한 소프트웨어를 개발하는 근본적인 해결책이 된다. 본 논문에서는 소프트웨어 개발과정에서 발생할 수 있는 보안약점을 최소화 하여 안전한 소프트웨어를 개발하기 위한 시큐어 코딩(secure coding)과 입력 데이터 값(문자열)을 정규화 함으로써 크로스 사이트 스크립팅(XSS)의 공격을 사전에 예방할 수 있는 방법을 제시한다.
Proceedings of the Korea Information Processing Society Conference
/
2001.10a
/
pp.515-518
/
2001
본 논문에서는 전처리단계로 영평균 정규화 기법과 주요성분분석 기법을 도입하여 다층신경망을 이용한 고신뢰성의 회귀분석 모델을 제안한다. 영평균 정규화 기법은 데이터의 1차적 통계성을 고려하여 알고리즘을 간략화시키며, 주요성분분석 기법은 입력 데이터의 2차적 통계성을 고려하여 독립인 특징들의 집합으로 변환시켜 학습데이터의 차원을 감소시킬 수 있어 고차원의 학습데이터에 따른 회귀분석 모델의 제약을 해결할 수 있었다. 제안된 기법의 신경망을 3개의 독립변수를 가진 암모니아 제조공정문제와 10개의 독립변수를 가진 자동차 연비문제에 각각 적용하여 시뮬레이션한 결과, 단순정규화나 PCA를 적용하지 않는 경우보다 제안된 기법의 학습속도와 회귀성능이 더욱 더 우수함을 확인할 수 있었다.
The Journal of the Korea institute of electronic communication sciences
/
v.14
no.3
/
pp.547-552
/
2019
Recently, the massive growth in the scale of data has been observed as a major issue in the Big Data. Furthermore, the Big Data should be preprocessed for normalization to get a high performance of the Machine learning since the Big Data is also an input of Machine Learning. The performance varies by many factors such as the scope of the columns in a Big Data or the methods of normalization preprocessing. In this paper, the various types of normalization preprocessing methods and the scopes of the Big Data columns will be applied to the SVM(: Support Vector Machine) as a Machine Learning method to get the efficient environment for the normalization preprocessing. The Machine Learning experiment has been programmed in Python and the Jupyter Notebook.
This paper presents an effective structure by applying various normalization to Convolutional Neural Networks (CNN) for seismic event classification. Normalization techniques can not only improve the learning speed of neural networks, but also show robustness to noise. In this paper, we analyze the effect of input data normalization and hidden layer normalization on the deep learning model for seismic event classification. In addition an effective model is derived through various experiments according to the structure of the applied hidden layer. As a result of various experiments, the model that applied input data normalization and weight normalization to the first hidden layer showed the most stable performance improvement.
Information theoretic learning (ITL) methods based on random symbols (RS) use a set of random symbols generated according to a target distribution and are designed nonparametrically to minimize the cost function of the Euclidian distance between the target distribution and the input distribution. One drawback of the learning method is that it can not utilize the input power statistics by employing a constant stepsize for updating the algorithm. In this paper, it is revealed that firstly, information potential input (IPI) plays a role of input in the cost function-derivative related with information potential output (IPO) and secondly, input itself does in the derivative related with information potential error (IPE). Based on these observations, it is proposed to normalize the step-size with the statistically varying power of the two different inputs, IPI and input itself. The proposed algorithm in an communication environment of impulsive noise and multipath fading shows that the performance of mean squared error (MSE) is lower by 4dB, and convergence speed is 2 times faster than the conventional methods without step-size normalization.
Proceedings of the Korea Information Processing Society Conference
/
2000.10b
/
pp.879-882
/
2000
화자종속 음성인식 시스템은 훈련 데이터가 화자들 사이의 음향적 변이를 충분히 모델링 할 수 있을 때, 화자독립 시스템보다 더 성능이 졸은 것으로 알려져 있다. 화자 정규화 기술은 입력음성의 스펙트럼을 수정하여 화자들 사이의 변이를 줄인다. 최근 성공적인 화자 정규화 알고리즘은 신호처리단계에 화자 특유 주파수 워핑을 통합했다. 이런 알고리즘은 입력음성에 담겨있는 음향적 특징을 다 사용하지 않는다. 본 논문에서는 화자의 음향적 특징으로 세 개의 포만트 주파수를 이용하였고, 수집된 포만트 주파수들로부터 워핑함수를 정의하는데 선형회귀를 사용한 화자 정규화 방법을 제안한다. 이 방법을 사용하여 인식 성능을 향상할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.