• Title/Summary/Keyword: 입도분리

Search Result 151, Processing Time 0.027 seconds

Effect of Different Milling Methods on Distribution of Particle Size of Rice Flours (제분방법이 쌀가루의 입자크기에 미치는 영향)

  • Kum, Jun-Seok;Lee, Sang-Hyo;Lee, Hyun-Yu;Kim, Kil-Hwan;Kim, Young-In
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.541-545
    • /
    • 1993
  • Two different methods (Sieve shaker, Elzone particle size analyzer) were used to investigate rice flour particle size obtained by various milling method. Results of Elzone particle size analyzer were more effective than Sieve shaker in determining particle size, and the distribution of particle size of rice flours was affected by the type of the milling methods used. A rice flour, prepared in a Pin mill had a particle size range of $60{\sim}500$ mesh, and 30.38% of the sample was in the particle size range $200{\sim}270$ mesh. A rice flour, prepared in a Colloid mill had a particle size range of $40{\sim}500$ mesh and more of flour particles appeared in the range $140{\sim}200$ mesh than any other particle size. A rice flour, prepared in a Micro mill had a particle size range of $140{\sim}500$ mesh, and 41.62% of the sample was in the particle size range over 500 mesh. A rife flour, prepared in a Jet mill had a finer flour particle size was over the particle size range 500 mesh. The finer rice flour gave the highest L value and the lowest a value. The wet-milled flour particles were observed as a cluster of starch granules and the particles of rice flour (dry-milling) were observed as fragment of rice grains. Scanning Electron Photomicrographs revealed that visual differences in structure between milling methods, and similar results with Elzone particle size analyzer method in particle size.

  • PDF

An Experimental Study on Mortar to Apply Building Structure (건축물 구조체에 적용가능한 모르타르에 관한 실험적 연구)

  • Kwon, Mi-Ok;Yoon, Ki-Hyun;Jung, Kang-Sik;Kim, Gang-Ki;Paik, Min-Su;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.413-416
    • /
    • 2008
  • The concrete used most in construction materials. There is an overcrowded iron dimensions use of the concrete at time of the other concrete theory on the reinforcing rod back which did congestion and compares it with this, and there are more few dimensions of the aggregate than concrete, and quantity of aggregate passage is superior in mortar than concrete. If a volume rate of the aggregate writes mortar than concrete against this, therefore, unit amount increases, and quantity of paste increases and quantity of dry shrinkage than increase concrete. However, I let I regulate lay priest distribution of the aggregate, and the results rates increase and reduce unit amount and decrease quantity of dry shrinkage, and separation resistance and the gap passage characteristics are judged because it can be it in a substitute document of very superior concrete. I came to carry out the study that I watched to let I was useful a little more and do the improvement repair of a become building wall body, a basement pillar and repair reinforcement of the assistant in the reinforcing rod back, the old age when I made congestion here. I regulated lay priest distribution of the aggregate in the study and regulated substitution rate of the aggregate (40%, 50%, 60%) and divided W/C 30%, 40% standards and produced mortar and I compared quantity of air by this, slump, compression robbery and showed it this time.

  • PDF

A Study on the Beneficiation of Illite by Selective Grinding and Air Classification (선택분쇄 및 공기분급에 의한 일라이트의 정제기술 연구)

  • Kim Sang-Bae;Cho Sung-Baek;Kim Wan-Tae;Yoon Sung-Dae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.19-31
    • /
    • 2005
  • A study on the beneficiation of illite occurring in Youngdong province is performed with applying selective grinding and air classification techniques. Quartz and illite are occurred as major components, and sulfide minerals such as pyrite, chalcopyrite are associated as minor components. The result of sieving test shows that contents of Al₂O₃, K₂O and ignition loss are increased, whereas SiO₂ is decreased with particle size decrease. Fe₂O₃ content is almost same in all the particle size range but slightly lower at coarse particles. The yield of fine particles is increased with increasing rotor speed in both grinding stage and air classification stage. When the selective grinding and air classification are carried out at optimal condition, yield of the concentrate is 76.16 wt.%. The chemical compositions of the concentrate are SiO₂70.13%, Al₂O₃ 19.40%, Fe₂O₃ 1.62%, K₂O 5.20%, and ignition loss 2.77%. The beneficiation process developed in the current study is very effective method which purification and particle size control can be achieved simultaneously.

Compressive Strength Evaluation of Concrete with Mixed Plastic Waste Aggregates Filled with Blast Furnace Slag Fine Powder (무기충진재를 혼입한 복합 폐플라스틱 골재를 활용한 콘크리트 압축강도 특성)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.253-259
    • /
    • 2021
  • Plastic wastes generated from household waste are separated by mixed discharge with foreign substances, and recycling is relatively low. In this study, the effect of the ratio and content of mixed plastic waste coarse aggregate(MPWCA)s and mixed plastic waste fine aggregate(MPWFA)s filled with blast furnace slag fine powder on the slump and compressive strength of concrete was evaluated experimentally. The MPWCAs were found to have a similar fineness modulus, but have a single particle size distribution with a smaller particle size compared to coarse aggregates. However, the MPWFAs were found to have a single particle size distribution with a larger fineness modulus and particle size compared to fine aggregates. Meanwhile, the effect of improving the density and filling pores by the blast furnace slag fine power was found to be greater in the MPWFA compared to the MPWCA. As the amount of the mixed plastic waste aggregate(MPWA)s increased, the slump and compressive strength of concrete decreased. In particular, the lower the slump and compressive strength of concrete was found to decrease the greater the amount of MPWFA than MPWCA when the amount of MPWA was the same. This is because of the entrapped air and voids formed under the angular- and ROD-shaped aggregates among the MPWFAs. On the other hand, the addition of the admixture and the increase in the unit amount of cement were found to be effective in improving the compressive strength of the concrete with MPWAs.

Current Research Trends for Recovery of Rare Earth Elements Contained in Coal Ash (석탄재에 포함된 희토류 회수 연구동향)

  • Kim, Young-Jin;Choi, Moon-Kwan;Seo, Jun-Hyung;Kim, Byung-Ryeol;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.3-14
    • /
    • 2020
  • This study aims to introduce and review on the recovery technologies of rare earth elements(REEs) from coal ash. Many researchers have been carried out by various beneficiation processes, such as particle size separation, magnetic separation, specific gravity, and flotation to recover rare earth elements from coal ash generated from Pulverized Coal(PC) boiler. Through the beneficiation process, it was confirmed that concentration of rare earth elements was much lower than the 4,700 ppm, and that additional enrichment treatment through wet process was needed for the products recovered after the beneficiation process. It was confirmed that the rare earth elements contained in coal ash were applied to the leaching process after pretreatment such as alkali-fusion to improve leaching efficiency. Although beneficiation and leaching methods have been studied, its optimum recovery technologies for rare earth elements not been confirmed up to now, research on the recovery of rare earth contained in coal ash is reported to continue. In case of Korea, the technology for the recovery of rare earth elements from coal ash and coal by-product could not been confirmed up to present. In these reasons, it is urgent to develop technologies such as beneficiation and leaching process continuously.

Possibility of Using Landfill Coal Ash as CLSM Material for Emergency Restoration of Ground and Road Joint Parts (지반 및 도로 공동부의 긴급복구용 CLSM 재료로 매립 석탄저회 활용 가능성)

  • Jin-Man Kim;Sang-Chul Shin;Kyoung-Nam Min;Ha-Seog Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.55-61
    • /
    • 2023
  • This study aims to develop CLSM fill material for emergency restoration using landfill coal ash. As a result of examining physical properties such as particle size distribution and fines content of landfill coal ash, bottom ash, fly ash, and general soil were mixed, and SP was found to have a density of 2.03 and a residual particle pass rate of 7.8 %. CLSM materials that secure fluidity in unit quantities without using chemical admixtures such as glidants and water reducing agents have a high risk of material separation due to bleeding. As a result of this experiment, it was found that the bleeding ratio did not satisfy the standard in the case of the specimen with a large amount of fly ash and a lot of addition of mixing water. As a result of the compressive strength test, the strength development of 0.5 MPa or more for 4 hours was found to be satisfactory for the specimens using hemihydrate gypsum with a unit binder amount of 200 or more, and the remaining gypsum showed poor strength development. Although it is judged that landfill coal ash can be used as a CLSM material, it is necessary to identify and apply the physical and chemical characteristics of coal ash buried in the ash treatment plant of each power generation company.

CaO Optimal Classification Conditions for the Use of Waste Concrete Fine Powder as a Substitute for Limestone in Clinker Raw Materials (폐콘크리트 미분말을 클링커 원료의 석회석 대체재로 사용하기 위한 CaO 최적 분급 조건)

  • Ha-Seog Kim;Sang-Chul Shin
    • Land and Housing Review
    • /
    • v.15 no.1
    • /
    • pp.147-156
    • /
    • 2024
  • This study aims to reduce CO2 generated during the manufacturing process by using limestone (CaCO3), a carbonate mineral used in the production of cement clinker, as a decarbonated raw material that does not contain CO2. Among various industrial by-products, we attempted to use cement paste attached to waste concrete. In general, limestone for cement must have a CaCO3 content of at least 80% (CaO, 44% or more) to ensure the quality of cement clinker. However, the CaO content of waste concrete fine powder is about 20% on average, so in order to use it as a cement clinker raw material, the CaO content must be increased to more than 35%. Therefore, by using the difference in hardness of the mineral composition of waste concrete fine powder to selectively crush CaO type minerals with relatively low hardness, classify and sieve, the CaO content can be increased by more than 35%. Accordingly, in this study, we experimentally and statistically reviewed and analyzed the optimal conditions for efficiently separating CaO and SiO2 and other components by selectively pulverizing minerals containing relatively low CaO through a grinding process. As a result of the optimal grinding conditions experiment, it was found that the optimal conditions were a grinding time of less than 5 minutes, a type of material to be crushed of 30 mm, and an amount of material to be crushed of 1.0 or more. However, it is judged that it is necessary to review pulverized materials of mixed particle sizes rather than pulverized products of single particle size.

Mineralogical and Physico-chemical Properties of Sludge Produced During Artificial Sand Processing (국내 화강암류를 이용한 일부 인공쇄석사 제조과정에서 발생되는 슬러지의 광물.물리화학적 특성)

  • Yoo, Jang-Han;Kim, Yong-Ug
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.303-311
    • /
    • 2007
  • The consumption of artificially crushed sands exceeds more than 30 percent of the domestic sand supply in South Korea, and its rate is still increasing. For the manufacture of crushed sand granites and granitic gneisses are preferred, fine fractions (i.e. sludge, particles finer than 63 microns) are removed by use of flocculation agents, and its amount occupy about 15 wt%. The sludges consist of quartz, feldspars, micas, chlorite/vermiculite, kaolinites, smectites and occasionally calcite. Among the clay minerals micas are usually predominant, and $14{\AA}$ minerals, kaolinites and smectites are rather scarce. Jurassic granites usually contain more kaolinites and smectites than those of Cretaceous to Tertiary granites, probably due to longer geologic ages. On the other hand, sludge from Precambrian gneiss does not contain kaolinites and smectites. Chemical analyses for the granites and their sludges show rather clear differences in most of major chemical components. Except for $SiO_2,\;Na_2O\;and\;K_2O$, all other components represent rather clear increase. Decrease of $SiO_2$ content is attributed to the relative decrease of quartz in the sludges. And the $Na_2O decrease is caused by a relatively stronger weathering property of albite compared to Ca plagioclase. The $K_2O$ content shows rather small differences throughout the whole samples. The increases of $Al_2O_3$ and other major components resulted from weathering processes and most of colored components are also concentrated in the sludges. Particle size analyses reveal that the sludges are categorized as sandy loams in a sand-silt-clay triangular diagram. The sludge is now classified as industrial waste because of its impermeability, and this result was also confirmed by rather higher hydraulic conductivities. For the environmental problems, and accomplishing effective sand manufacture, more fresh rocks with little weathering products must be chosen.

Fabrication of ZnO incorporated TMA-A zeolite nanocrystals (ZnO를 담지한 TMA-A 제올라이트 나노결정의 제조)

  • Lee, Seok-Ju;Lim, Chang-Sung;Kim, Ik-Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.238-244
    • /
    • 2007
  • Nano-sized ZnO crystals were successfully incorporated using ion exchange method in TMA-A zeolite synthesized by the hydrothermal method. The optimal composition for the synthesis of TMA-A zeolite was resulted in a solution of $Al(i-pro)_3$:2.2 TEOS:2.4 TMAOH:0.3 NaOH:200 $H_2O$. 0.3g of TMA-A zeolite and 5mol of $ZnCl_2$ solution were employed for the preparation of ZnO incorporated TMA-A zeolite. The ZnO incorporated TMA-A zeolite precursors, prepared from the process of mixing, stirring, centrifugal separation and drying, were calcined at temperatures from 400 to $600^{\circ}C$ for 3 h. The crystallization process of ZnO incorporated TMA-A zeolite was analyzed by X-ray diffraction (XRD). The Brunaur-Emett-Teller (BET) surface area of the ZnO incorporated TMA-A zeolite was measured. Subsequently, the morphology and the particle size depending on the temperature and time were observed using scanning electron microscopy(SEM), transmission electron microscopy(TEM) and particle size analyzer.

A Study on the Characteristics and Utilization of Ash from ASR Incinerator (ASR 소각재의 이화학적 물성 및 재활용(再活用)을 위한 기초연구(基礎硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.32-39
    • /
    • 2007
  • The measurement of physicochemical properties of ASR incineration ash has been carried dot and the preparation of light-weight material has also been performed using ASR ash for recycling point of view as building or construction materials. For this aim, chemical composition, particle size distribution, and heavy metal leachability were examined for 2 bottom ashes and 4 fly ashes obtained from the domestic ASR incinerator. In the present work, attempt has been made to prepare the lightweight material using boiler ash as a raw material, which is prepared by forming the mixture of boiler ash, lightweisht filler and inorganic binder and followed by calcination at elevated temperature. As a result, the content of Cu in bottom ash was as high as about 3wt% so that the recovery of Cu from ash was required. The major compound of SDR #5 and Bag filter #6 was found to be $CaCl_2{\cdot}Ca(OH)_2{\cdot}H_2O\;and\;CaCl_2{\cdot}4H_2O$, respectively. It is thought that heavy metal teachability of lightweight material prepared with boiler ash was significantly decreased due to the encapsulation or stabilization of heavy metal compounds.