• Title/Summary/Keyword: 입구 유속

Search Result 152, Processing Time 0.021 seconds

Flow Characteristics for the Variation of Total Angles in Open Channel Bends (개수로 만곡부에서의 중심각 변화에 따른 흐름특성)

  • Lee, Jong Tae;Yoon, Sei Eui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.195-202
    • /
    • 1987
  • The flow characteristics in the shallow open channel bends are investigated, whose total angles were 30, 60, 90, 120, 150 and 180 in degree, and whose bed frictions were relatively rough(C=30) and smooth(C=60), respectively. The terms analyzed in this study are the water surface profile, the distribution of velocity and the flow direction, relating to the various total angles in the bends. The maximum depth in the bends could be found at the outside section of the location of $15^{\circ}$ local angle from the bend inlet, having no relation to the total angle and bed friction. It is supposed that the path of maximum velocities is especially influenced by the bottom friction when the total angles are bigger than 150 in degree, approximately. The ratio of the superelevation to the velocity head seems to increase as the total angle of the bends increases. The flow direction is skewed to the inner side at the bend inlet, and skewed to the outside at the bend outlet, regardless of their total angles.

  • PDF

Combined raidation-forced convection in a circular tube flow (원관내 유동에서의 복사 및 강제대류 열전달에 관한 연구)

  • 임승욱;이준식;이택식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1652-1660
    • /
    • 1990
  • Combined radiative-convective heat transfer in a hot gas tube flow has been investigated numerically and experimentally. In the numerical analysis, a standard k-.epsilon. model is used for the evaluation of turbulent shear stresses and spherical harmonics method with the Weighted Sum of Gray Gases Model for the solution of radiative transfer equation. In the experimental study measured are the velocity and temperature of the hot gas flow generated by the propane gas combustion, and tude wall heat flux distribution. Numerical results are compared with experimental ones and it is confirmed that P-3 provides quite reliable results in the analysis of the combined radiation-convection system.

Aerodynamics Characteristics on a Canard-Controlled Projectile (카나드에 의하여 방향조종 되는 탄의 공력특성에 관한 실험적 연구)

  • Park, Young-Ha;Je, Sang-Eon;Cho, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.42-51
    • /
    • 2013
  • An experimental study was conducted on a subsonic wind tunnel to obtain aerodynamic coefficients for various situations in order to control the direction of a projectile. The angle of attack on the projectile was varied from $-5^{\circ}$ to $15^{\circ}$ and the roll angle of canard was changed from $0^{\circ}$ to $90^{\circ}$. The angle of attack on the canard was adjusted from $-20^{\circ}$ to $20^{\circ}$ and various inlet velocities were applied. Maximum Reynolds number based on the diameter of projectile was $5.5{\times}10^5$. The measured aerodynamic coefficients showed the same results for the various inlet velocities, and the highest effect on the canard was shown when the canard was set to the roll angle of $0^{\circ}$.

Flow Characteristics in the Downstream Region of a Butterfly Valve with Various Disk Opening Angle (디스크 회전각에 따른 버터플라이 밸브 하류에서의 유동특성)

  • Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.267-272
    • /
    • 2006
  • Butterfly valves have been used for shut-off and throttling-control application in many industrial fields. Recently, they are frequently used for cooling water, oil system and ballast piping system of many larger vessels. They are especially suited for flow throttling control of heat exchangers in engine room. Measurement by the PIV(Particle Image Velocimetry) was conducted to investigate the flow characteristics of butterfly valve inserted within circular pipe. Flow behaviors such as instantaneous and time-mean velocity vectors are investigated. Furthermore, to reveal systematic performance of the butterfly valve, wall pressure was measured at 6 points along the pipe by digital manometer. As the valve position moves to the closed side, flow separation increases and persists its tendency downstream until smoothly uniform flow developed. The pressure loss is found to be about zero for the disk open angles less than 45 degrees, but is substantially increased for those larger than 60 degrees.

  • PDF

Hydrography and Sub-tidal Current in the Cheju Strait in Spring, 1983 (1983년 춘계 제주해협의 해황과 해류)

  • Chang, Kyung-Il;Kim, Kuh;Lee, Suk-Woo;Shim, Tae-Bo
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.203-215
    • /
    • 1995
  • Two hydrographic surveys along with direct current measurements using drogues and moored current meters were conducted in Cheju Strait during April and May, 1983. The data clearly demonstrate that a branch of the Kuroshio characterized by high temperature and high salinity enters the Cheju Strait after turning around the western coast of Cheju-Do. The width of the current turning west of Cheju-Do is about 60 km and reduces to 20∼30 km in the strait, resulting in a high speed(>10 cm/s) at the western entrance and in the middle of the strait, compared with a low speed (>5 cm/s) west of Cheju-Do. The Tsushima Current water also originating from the Kuroshio shows its influence in the eastern part of the Cheju Strait. Thermohaline fronts formed between the warm current waters and the coastal waters suggest the southward extension of the Yellow Sea Coastal Water west of the Cheju Strait. A warming of the warm current waters occurs in May, while a cooling takes place in other areas. The major freshening and cooling of water take place in the middle of the Cheju Strait in May due to the intrusion of cold and low salinity water from the west of the Cheju Strait.

  • PDF

Experimental Investigation on Heat Transfer Characteristics in a Uniformly Heated Pipe with Pulsating Pressure (맥동 압력을 받는 가열관 내부에서의 열전달 특성에 관한 실험적 연구)

  • 이건태;강병하;이재헌;이춘식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1760-1769
    • /
    • 1992
  • An experimental study of thermal transport from a uniformly heated pipe to a pulsating flow has been carried out. Surface of the pipe is imposed with constant heat flux providing by electric heating band. This problem is of particular interest in the design of Stirling engine heat exchangers and in understanding the blood flow in the aorta. Temporal Variatiens of temperature and pressure inside the circular pipe are measured. The dependence of temperature distributions and heat transfer rate on the mean flow rate in the pipe and on the pulsating frequency is investigated in detail. The experimental results indicate that the measured temporal variations of temperature and pressure become nearly sinusoidal The amplitude of temperature variation near the pipe wall is much more substantial than that in core of the pipe. It is also found that the heat transfer rate is increased significantly as the frequency of the pulsating pressure is increased or the mean flow rate in a pipe is increased. The results obtained are also compared with those for non-pulsating flow circumstance.

An experimental study on the open channel flow with plane wall jet inlet boundary condition and effects of a baffle (평면벽면분류의 유입경계조건을 가지는 개수로 유동 및 배플의 영향에 관한 실험적 연구)

  • 방병렬;설광원;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1399-1406
    • /
    • 1988
  • Flow behaviors of the open channel type flow with its geometric boundary conditions being similar to that of the Multi-Stage-Flash evaporator were studied qualitatively by measuring the velocity distribution. Without a baffle, the flow was in the shape of a simple submerged plane wall jet. At the downstream of this flow, the jet boundary made sharp curve toward the free surface ; this is because the entrainment of the ambient liquid is restricted by the free surface boundary, similar to the Coanda effect. According to the experimental results the level of the free surface appeared to be the most important parameter. The flow with a baffle was in much complicated shape ; especially the recirculating region at the downstream free surface was detected according to the experimental conditions imposed. Inlet liquid velocity, heights of the liquid level and the baffle, and the opening heights of sluice gate of the entrance were the most important parameters in the baffle flow.

Heat Transfer Characteristics of Carbon Dioxide in a Inclined Helical Coil Type Heat Exchanger with Inner Diameter Tube of 4.55 mm (내경 4.55 mm의 경사진 헬리컬 코일형 열교환기내 이산화탄소의 열전달 특성에 관한 연구)

  • Son, Chang-Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2007
  • The heat transfer coefficient and pressure drop during gas cooling process of $CO_2$ (R-744) in inclined helical coil copper tubes were investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and a inclined helical coil type gas cooler (test section). The test section consists of a smooth copper tube, which is specified as the inner diameter of 4.55 mm. The refrigerant mass fluxes were varied from 200 to $600kg/m^2s$ and the inlet pressures of gas cooler were done 7.5 to 10.0 (MPa). The heat transfer coefficients of $CO_2$ in the inclined helical coil tubes increase with the increase of mass flux and gas cooling pressure of $CO_2$. The pressure drop of $CO_2$ in the gas cooler shows relatively good coincidence with those predicted by Ito's correlation developed for single-phase in a helical coil tube. The local heat transfer coefficient of $CO_2$ is well coincident with the correlation by Pitla et al. However, at the region near pseudo-critical temperature, the experiments indicate higher values than the Pitla et al. correlation.

  • PDF

Numerical Simulations for Dispersion of the Suspended Sediments Near Daesan Coastal Areas (대산항 해역의 부유사 확산 수치모사)

  • Kim, Jin-Hyuk;Park, Gun-Hyung;Kim, Ki-Chul;Suh, Kyung-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • EFDC model was applied to reproduce velocity fields and to evaluate the dispersion characteristics of suspended sediments (SS) around a Daesan port. Numerical results using two-dimensional hydrodynamic model of EFDC showed good agreements through comparison with the time series and harmonic analysis of the tidal elevations. The dispersion patterns of the suspended sediments using the calculated velocity fields were calculated to move from east to northeast direction in flood tide and from west to southwest in ebb tide for dredging of sea route, respectively. Also, the suspended sediments were widely dispersed into the front areas of a Daesan port, Nanji-do and Garorim bay in the long-term. Therefore, it was inferred that the environmental problems for sea pollution would be occurred seriously if the dredging for sea route would be continued in the long-term.

Analysis of Flow Characteristics in Pump Sump by Floor Cone Anti-Vortex Device Installation (원뿔 형태의 와류발생저감장치 설치로 인한 펌프 흡수조 내 흐름특성 변화 분석)

  • Byeon, Hyunhyuk;Kim, Heejung;Kim, Seojun;Yoon, Byumgman
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.73-73
    • /
    • 2017
  • 최근 기후변화에 따른 집중호우로 도시홍수의 피해가 급격히 증가하고 있다. 특히 인구가 밀집하고 교통량이 많은 대도시의 경우 동일한 호우에 대하여 녹지나 농경지 등에 비해 그 피해가 더 심각하다. 일반적으로 홍수 피해의 직접원인은 외수로 인한 피해와 내수로 인한 피해로 크게 구분할 수 있다. 외수피해는 주로 소하천 및 지천의 범람, 제방의 붕괴 등으로 발생한 것이며 내수피해는 배수로, 하수도 및 펌프장의 내수배제능력 부족이 주된 원인이다. 따라서 도시홍수를 효과적으로 방어하기 위해서는 우선적으로 내배수시설의 성능개선이 선행되어야 할 필요가 있다. 이러한 내배수 시설 중 빗물펌프장은 흡수조로 우수를 유도한 후 펌프를 이용하여 하천으로 배수하고 있다. 우수를 원활히 하천으로 배수하기 위해서는 흡수조 내 흐름이 안정적으로 형성되어야 한다. 하지만 갑작스런 폭우 등으로 인하여 우수가 짧은 시간에 집중될 경우 흡수조 내에서 빠른 유속과 불규칙한 흐름이 발생하여 와류가 생성된다. 이러한 와류는 펌프 입구로 공기를 유입시켜 효율 저하의 원인이 되며, 공동현상을 발생시켜 펌프의 손상을 초래하기도 한다. 따라서 와류발생 저감장치(Anti-Vortex Device)를 설치하여 와류의 생성을 억제하고자 하는 연구들이 수행되었으며, 그 결과 다양한 형태의 와류발생 저감장치가 소개되었다. 하지만 와류발생 저감장치의 명확한 설계기준이 제시되어 있지 않으며, 와류발생 저감장치를 설치하였을 때 효율이 얼마만큼 증가하는가에 대한 실험적인 자료가 제시되어 있지 않다. 따라서 본 연구에서는 원뿔 형태의 와류발생 저감장치 설치 전 후의 흐름특성을 분석하여 원뿔형태의 와류발생 저감장치가 흐름안정에 얼마나 효과가 있는지를 확인하기 위하여 PIV(Particle Image Velocimetry) 기법을 이용한 유속분포와 와도를 분석하여 흐름 안정 효과를 정량적으로 검토하였다. 그 결과 와류 발생을 저감할 수 있었으며, 정량적으로 와도가 감소하여 펌프 흡입량이 증가됨을 확인하였다. 향후 추가적으로 다양한 형태의 와류발생 저감장치에 대한 효과를 검토한다면 최적의 펌프 흡수조 설계에 도움이 될 것으로 기대한다.

  • PDF