• Title/Summary/Keyword: 임플란트 시스템

Search Result 93, Processing Time 0.022 seconds

FIT OF FIXTURE/ABUTMENT INTERFACE OF INTERNAL CONNECTION IMPLANT SYSTEM (내측연결 임플란트 시스템에서 고정체와 지대주 연결부의 적합에 관한 연구)

  • Lee Heung-Tae;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.192-209
    • /
    • 2004
  • Purpose : The purpose of this study was to evaluate the machining accuracy and consistency of implant/abutment/screw combination or internal connection type. Material and methods: In this study, each two randomly selected internal implant fixtures from ITI, 3i, Avana, Bicon, Friadent, Astra, and Paragon system were used. Each abutment was connected to the implant with 32Ncm torque value using a digital torque controller or tapping. All samples were cross-sectioned with grinder-polisher unit (Omnilap 2000 SBT Inc) after embeded in liquid unsaturated polyester (Epovia, Cray Valley Inc). Then optical microscopic and scanning electron microscopic(SEM) evaluations of the implant-abutment interfaces were conducted to assess quality of fit between the mating components. Results : 1) Generally, the geometry of the internal connection system provided for a precision fit of the implant/abutment into interface. 2) The most precision fit of the implant/abutment interface was provided in the case of Bicon System which has not screw. 3) The fit of the implant/abutment interface was usually good in the case of ITI, 3I and Avana system and the amount of fit of the implant/abutment interface was similar to each other. 4) The fit of the implant/abutment interface was usually good in the case of Friadent, Astra and Paragon system. The case of Astra system with the inclined contacting surface had the most Intimate contact among them. 5) Amount of intimate contact in the abutment screw thread to the mating fixture was larger in assembly with two-piece type which is separated screw from abutment such as Friadent, Astra and Paragon system than in that with one-piece type which is not seperated screw from abutment such as ITI, 3I and Avana system. 6) Amount of contact in the screw and the screw seat of abutment was larger in assembly of Friadent system than in asembly of Astra system of Paragon system. Conclusion: Although a little variation in machining accuracy and consistency was noted in the samples, important features of all internal connection systems were the deep, internal implant-abutment connections which provides intimate contact with the implant walls to resist micro-movement, resulting in a strong stable interface. From the results of this study, further research of the stress distribution according to the design of internal connection system will be required.

A comparative study on the fit and screw joint stability of ready-made abutment and CAD-CAM custom-made abutment (기성 지대주와 맞춤형 CAD-CAM 지대주의 적합 및 나사 안정성 비교)

  • Kim, Jong-Wook;Heo, Yu-Ri;Kim, Hee-Jung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.4
    • /
    • pp.276-283
    • /
    • 2013
  • Purpose: The purpose of this study was to investigate the fit and screw joint stability between Ready-made abutment and CAD-CAM custom-made abutment. Materials and methods: Osstem implant system was used. Ready-made abutment (Transfer abutment, Osstem Implant Co. Ltd, Busan, Korea), CAD-CAM custom-made abutment (CustomFit abutment, Osstem Implant Co. Ltd, Busan, Korea) and domestically manufactured CAD-CAM custom-made abutment (Myplant, Raphabio Co., Seoul, Korea) were fabricated five each and screws were provided by each company. Fixture and abutments were tightening with 30Ncm according to the manufacturer's instruction and then preloding reverse torque values were measured 3 times repeatedly. Kruskal-Wallis test was used for statistical analysis of the preloading reverse torque values (${\alpha}=.05$). After specimens were embedded into epoxy resin, wet cutting and polishing was performed and FE-SEM imaging was performed, on the contact interface. Results: The pre-loading reverse torque values were $26.0{\pm}0.30Ncm$ (ready-made abutment; Transfer abutment) and $26.3{\pm}0.32Ncm$ (CAD-CAM custom-made abutment; CustomFit abutment) and $24.7{\pm}0.67Ncm$ (CAD-CAM custom-made abutment; Myplant). The domestically manufactured CAD-CAM custom-made abutment (Myplant abutment) presented lower pre-loading reverse torque value with statistically significant difference than that of the ready-made abutment (Transfer abutment) and CAD-CAM custom-made abutment (CustomFit abutment) manufactured from the same company (P=.027) and showed marginal gap in the fixture-abutment interface. Conclusion: Within the limitation of the present in-vitro study, in domestically manufactured CAD-CAM custom-made abutment (Myplant abutment) showed lower screw joint stability and fitness between fixture and abutment.

The treatment of an edentulous patient with DENTCA$^{TM}$ CAD/CAM Denture (CAD/CAM Denture를 이용한 완전 무치악 환자 수복 증례)

  • Park, Joon-Ho;Cho, In-Ho;Shin, Soo-Yeon;Choi, Yu-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.1
    • /
    • pp.19-25
    • /
    • 2015
  • Nowadays, CAD/CAM is broadly used in dentistry for inlays, crowns, implant abutments and its spectrum is expanding to complete dentures. Utilizing CAD/CAM to fabricate complete dentures is expected to decrease chair time and the number of visits, thus decreasing total fabrication time, expenses and errors caused during fabrication processes. One of the systems using CAD/CAM, DENTCA$^{TM}$ CAD/CAM denture (DENTCA Inc. Los Angeles, USA) scans edentulous impressions, designs dentures digitally, fabricates try-in dentures by 3D printing and converts them into final dentures. Patients can wear final dentures after only 2 - 3 visits with satisfying adaptation. This case report introduces a 71-year-old male patient who visited to consult remaking of existing old dentures. Residual teeth with bad prognosis and root remnants were extracted and the patient used reformed existing mandibular denture for 2 months. And then DENTCA system started. One-step border molding was done using conventional tray of adequate size provided by DENTCA system and wash impression was taken. Gothic arch tracing was completed based on the vertical dimension of existing dentures. Both maxillary and mandibular trays were placed to the resultant centric relation and bite registration was taken. Then DENTCA scanned the bite registration, arranged the teeth, completed the festooning and fabricated the try-in dentures by 3D printing. The try-in dentures were positioned, occlusal plane and occlusal relations were evaluated. The try-in dentures were converted to final dentures. To create bilateral balanced occlusion, occlusal adjustment was done after clinical remounting using facebow transfer. The result was satisfactory and it was confirmed by patient and operator.