• Title/Summary/Keyword: 임펠러 압력맥동

Search Result 4, Processing Time 0.022 seconds

Identification on Fatigue Failure of Impeller at Single Stage Feedwater Pumps During Commissioning Operation (단단 주 급수 펌프 임펠러에서 시운전 중 발생한 피로 절손에 관한 규명 연구)

  • Kim, Yeon-Whan;Kim, Kye-Yean;Bae, Chun-Hee;Lee, Young-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.937-942
    • /
    • 2008
  • This paper presents a case history on failures of impeller and shaft due to pressure pulsation at single stage feed water pumps in 700 MW nuclear power plant during commissioning operation. The pumps had been service and had run for approximately $40{\sim}50$ hours. For the most part, the failures of impeller occurred with the presence of a number of fatigue cracks. All cracks were associated with the deleterious surface layer of impeller by visual and metallurgical examination. On-site testing and analytical approach was performed on the systems to diagnose the problem and develop a solution to reduce the effect of exciting sources. A major concern at high-energy centrifugal pump is the pressure pulsation created from trailing edge of the Impeller blade, flow separation and recirculation at centrifugal pumps of partial load. Pressure pulsation due to the interaction generating between impeller and casing coincided with natural frequencies of the impeller and shaft system during 1ow load operation. It was identified that dynamic stress exceeding the fatigue strength of the material at the thin shroud section due to the hydraulic instability at running condition below BEP.

Impeller Failure and Pressure Pulsation of Boiler Main Feed Water Pump for Power Plant (발전소 주 급수 펌프의 임펠러 손상과 압력맥동 현상)

  • Kim, Yeon-Whan;Kim, Kye-Youn;Lee, Woo-Kwang;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.368-373
    • /
    • 2001
  • A major concern on high-energy centrifugal pump is the potential for interaction of two-phase flow phenomena with mechanical response of the pumping elements. The other concern is the pressure pulsations created from trailing edge of the impeller blade and flow separation and recirculation at partial load in centrifugal pumps. These interactions generating between rotor and casing cause dynamic pulsation on pump and exciting pipeline vibration. The higher severity responses, the more lead to failure of pump and system components. Finally, it cause severe axial vibration of single stage pump due to the hydraulic instability in flow condition below BEP.

  • PDF

Mechanism Diagnosis and Avoidance Design on Transient Acoustic Vibration of Reheater Water Supply Piping in Supercritical Boiler (초임계 보일러 재열기 급수 공급배관의 과도 음향진동 진단 및 회피설계)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Kim, Jae-Won;Lee, Doo-Young;Heo, Hae-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.385-393
    • /
    • 2013
  • In this paper, the mechanism identification and the avoidance measures on the phenomena of transient acoustic vibration amplified at the water-supply piping system to regulate the steam temperature of the boiler reheater in 500MW class supercritical power plant are presented. The pressure pulsation waves induced by the impeller passing of two feed-water pumps with five blades are coincident with the local acoustic modes of boiler reheater water-supply piping system. There are the phenomena amplified at the peaks of 5X, 10X, 15X and 20X in spectrums of piping vibration, sound pressure, and the feed-water's pressure pulsation waves. The shut-off device is installed in the piping system for the interception of pressure pulsation waves transmitted from two feed-water pumps and the modified design change of the piping layout is applied for the acoustic resonance avoidance. The acoustic natural frequencies are separated from the harmonics of pressure pulsation waves induced by the pump impellers passing through the design change of the span length. The acoustic vibration is gone by resonance avoidance measures. As a result, more than 20 dBA reduction is achieved from 100 dBA to 80 dBA.

Mechanism Investigation and Measures on Acoustic Vibration Phenomena of Water Supply Piping (급수 배관계의 음향진동 현상 고찰 및 대책)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Lee, Doo-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.470-475
    • /
    • 2012
  • The downstream piping system of the water supply system in a supercritical power plant is affected by the fluctuation pressure waves induced by accessing to the acoustic modes of the piping systems with the rotation and impeller passing pulsations of the feed water pump. There are the phenomena amplified at the same time in the range of 415 ~ 455Hz, 830 ~ 910Hz, 1245 ~ 1365Hz and 1660 ~ 1820Hz on the spectrums of the vibration, the sound pressure, and the pressure fluctuation waves.

  • PDF