• Title/Summary/Keyword: 임펠러(impeller)

Search Result 389, Processing Time 0.037 seconds

Cavitation Test of a High Pressure Turbopump (터보 펌프의 캐비테이션 실험)

  • Lee, Jong-Min;Kang, Shin-Hyoung;Lee, Kyoung-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.4 s.25
    • /
    • pp.16-23
    • /
    • 2004
  • Hydraulic performance and cavitation characteristics of fuel pump in turbopump were studied experimentally. This fuel pump has a centrifugal impeller with a separate inducer. In this paper, static pressure distribution of inducer was examined in non-cavitation and cavitation conditions. As cavitation came, the rising curve of static pressure in front of inducer was lightened because blade lodging did. In result, this offered the mechanism that recirculation zone could be small in case that recirculation was generated in low flow rate.

A Numerical Analysis on Flow Characteristic of 200HP Grade Water Jet for Small Ship (소형선박용 200마력급 Water Jet의 유동특성에 관한 수치해석)

  • Yi, Chung-Seob;Jeong, Jae-Hoon;Lee, Jong-Su;Yun, Ji-Hun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.150-155
    • /
    • 2012
  • Water jet propulsion system has low efficiency than screw propeller at low speed, but has been applied in high speed ship due to its better cavitation performance and high rotation capacity. In this study, a numerical analysis was conduct to understand the flow in the propulsion system of 200HP grade water jet for small ship. As the result, it could be confirmed that total pressure and force of the flow was increased through the impeller and the straight-ability of discharging flow to outlet was improved by guide vane. Also, the reliability of numerical analysis was secured by comparing peripheral velocity calculated by design values with that calculated by numerical analysis.

Study on the Mechanical Property of Turbopump Material (터보펌프 소재의 기계적 물성치 검토에 관한 연구)

  • Lee, Kwan-Ho;Jeon, Seong-Min;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.346-352
    • /
    • 2003
  • The study was performed to search on alternative material for turbopump parts made of Russian material by analyzing and comparing chemical and mechanical material properties. Iron base material was generally used for turbopump. This material can be categorized into stainless steel and heat resisting steel by quantity of additional elements. Each steel was also classified into austenite steel, ferrite steel, and martensite steel. Alternative materials for turbopump inducer, impeller and casing are chosen by JIS SUS 631 and 321 as a result of this study. Because the material of Russian turbopump turbine may be developed by Russia itself, alternative material can be hardly found. However, Inconel 718 for turbine material is thought to be proper in the aspect of hardness considering general use of this material for turbopump turbine in Japan and France.

  • PDF

Improvement of the Structural Soundness of a Small-Sized Turbocharger Using Fluid-Structural Interaction Analysis (유체-구조 연성해석 기법을 이용한 소형 터보차저 건전성 향상 연구)

  • Gwak, Woo-Gyeong;Kim, Youn-Jea
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.2
    • /
    • pp.24-29
    • /
    • 2016
  • A small-sized turbocharger is generally used in downsizing engine for various vehicles. When a centrifugal compressor, which is one of the crucial units of the turbocharger, is downsized, the compressor has much more possibilities of being damaged because of its high rotating speed, causing insecure structural soundness. Thus, it is of essential to study on the improvement of the structural soundness of a small-sized turbocharger. In this study, numerical analysis on the various blade geometries and mass flow rate of the compressor was performed using the commercial software ANSYS CFX. In addition, the evaluation on the structural soundness of a compressor impeller for respective cases was conducted using ANSYS Mechanical. As a result, it was shown that the compressor had higher efficiency with increasingly secured structural soundness.

A Study on the Design Method of Mixers for Water&Sewage water treatment (상하수처리용 교반기의 설계 방법 연구)

  • Lee, Hye-Young;Joo, Yoon-Sik;Kang, Mun-Hu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.427-430
    • /
    • 2003
  • The Mixers is used for the Mixing which is the most important process in the Water&Sewage water treatment. To choose proper mixer required much career and knowledge, to check many elements which are purpose, time and condition of mixing. Thus, the design method of mixers is to be utilized for the structural design of the water & Sewage water treatment.

  • PDF

Performance Estimation of Cross-Flow Fan by Numerical Method (수치해석적 기법을 이용한 횡류홴 성능 평가)

  • Kim, D.-W.;Lee, J.-H.;Park, S.-K.;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.152-157
    • /
    • 2002
  • A cross-flow fan is widely used on many industrial fields: a blower for the general industry, mining industry, automobile and home appliances. The design point of the cross-flow fan is generally chosen by based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between $30\%$ and $40\%$ because of relative high impact loss. Recently, in the air-conditioning systems, the operating behaviors at the off-design points are highly regarded to broaden the application area for various air-cooling loads. Especially, at the low flow rate, there exists a rapid pressure head reduction, a noise increase and an irregular flow against a rearguider as a scroll of centrifugal fan. Numerical analyses are carried out for cross-flow fan including the impeller, the rearguider and the stabilizer. Numerical domains are discretized by hexahedral cells. Three-dimensional, unsteady governing equations are solved using FVM, SIMPLE algorithm, sliding grid system and standard k-$\epsilon$ turbulence model.

  • PDF

Optimal Design of Impeller Shroud for Centrifugal Compressor Using Response Surface Method (반응표면법을 이용한 원심압축기 임펠러 쉬라우드 형상최적설계)

  • Kang, Hyun-Su;Hwang, In-Ju;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.43-48
    • /
    • 2015
  • In this study, a method for optimal design of impeller shroud for centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was studied. Numerical simulation was conducted using ANSYS CFX with various configurations of shroud. Each of the design parameters was divided into 3 levels. Total 15 design points were planned by central composite design (CCD) method, which is one of the design of experiment (DOE) techniques. Response surfaces based on the results of DOE were used to find the optimal shape of impeller shroud for high aerodynamic performance. The whole process of optimization was conducted using ANSYS Design Xplorer (DX). Results showed that the isentropic efficiency, which is the main performance parameter of the centrifugal compressor, was increased 0.4% through the optimization.

Investigation into the Internal Flow Characteristics of a Pump-turbine Model

  • Singh, Patrick Mark;Chen, Chengcheng;Chen, Zhenmu;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.36-42
    • /
    • 2015
  • This is a study about one of the most widely used hydro machinery all over the world - pump-turbine. The system has an impeller which pumps water to an upper reservoir during the night and the same impeller acts as a runner for turbine mode during the day for providing stable electrical power to the grid. The internal flow analysis is investigated in this study to help understand how the water passes through the passage of the vanes and blades, providing the designer with useful information on the behavior of recirculation flows which could reduce the efficiency of the pump-turbine. The 100 kW pump-turbine model has H = 32 m, $Q=0.336m^3/s$ and $N=1200min^{-1}$. For this study there are 7 blades, 19 stay vanes and 20 guide vanes. From this study, it was observed that this pump-turbine design showed very good internal flow characteristics with no flow separation and no recirculation flows in normal operation mode.

Characteristics of a Small Screw-type Centrifugal Pump Operating in Air-Water Two-Phase Flow (소형 스크류식 원심펌프의 기액 이상류 특성)

  • Kim, You-Taek;Tanaka, Kazuhiro;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.9-15
    • /
    • 1999
  • A screw-type centrifugal pump was manufactured to carry primarily solids and its impeller had a wide flow passage. However, there was an effect on the flow passage shape on delay of the choke due to entrained air not being clarified yet. Moreover, because its impeller has a particular shape, only few studies have tried to clarify the pump performance and details of internal flow pattern of that pump. For this reason, we carried out the pump performance experiment under air-water two-phase flow condition with different impeller tip clearances, pump rotational speeds and void fractions by using a small screw-type centrifugal pump designed to acquire basic data. In a general centrifugal pump, it was reported that there was a loss of pump head from single-phase flow to the choke due to air entrainment near the best efficiency point being large. However, the loss near the best efficient point in a screw-type centrifugal pump became less than that in a general centrifugal pump.

  • PDF