• Title/Summary/Keyword: 임베딩 모델

Search Result 253, Processing Time 0.025 seconds

R3 : 테이블의 구조 정보를 활용한 오픈 도메인 질의응답 시스템 (R3 : Open Domain Question Answering System Using Structure Information of Tables)

  • 강덕형;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.455-460
    • /
    • 2022
  • 오픈 도메인 질의 응답에서 질의에 대한 답변은 질의에 대한 관련 문서를 검색한 다음 질의에 대한 답변을 포함할 수 있는 검색된 문서를 분석함으로써 얻어진다. 문서내의 테이블이 질의와 관련이 있을 수 있음에도 불구하고, 기존의 연구는 주로 문서의 텍스트 부분만을 검색하는 데 초점을 맞추고 있었다. 이에 테이블과 텍스트를 모두 고려하는 질의응답과 관련된 연구가 진행되었으나 테이블의 구조적 정보가 손실되는 등의 한계가 있었다. 본 연구에서는 테이블의 구조적 정보를 모델의 추가적인 임베딩을 통해 활용한 오픈 도메인 질의응답 시스템인 R3를 제안한다. R3는 오픈 도메인 질의 응답 데이터셋인 NQ에 기반한 새로운 데이터셋인 NQ-Open-Multi를 이용해 학습 및 평가하였으며, 테이블의 구조적 정보를 활용하지 않은 시스템에 비해 더 좋은 성능을 보임을 확인할 수 있었다.

  • PDF

상품명 및 리뷰를 기반으로 한 브랜드-트렌드 연관성을 통한 이커머스 경쟁력 강화 (Enhancing E-commerce Competitiveness through Brand-Trend Association Based on Product Names and Reviews)

  • 신기영;정헌영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.596-599
    • /
    • 2023
  • 본 연구는 브랜드가 시장 트렌드를 파악하고 이를 활용하여 경쟁 우위를 확보하고 성장하는 방법을 탐구하고 있다. 이를 위해 세 가지 핵심 요소를 고려하였다. 첫째, 시장의 트렌드 정보를 파악하기 위해 검색 포털 사이트의 검색어 랭킹 정보를 활용하였다. 둘째, 브랜드 상품과 트렌드의 연관성을 분석하기 위해 상품 타이틀과 리뷰 데이터를 활용하였다. 셋째, 각 상품의 브랜드 중요성을 추정하기 위해 리뷰 수, 리뷰 길이, 표현의 다양성 등을 고려했다. 연구 결과, 브랜드는 시장 트렌드를 더욱 정확하게 이해하고 파악함으로써 경쟁 우위를 확보하고 성장할 수 있는 기회를 제공함을 확인하였다. 더불어, 이를 통해 브랜드는 소비자의 요구를 더욱 효과적으로 충족시키고 고객 경험을 개선하는데 기여할 수 있을 것으로 기대된다.

  • PDF

딥러닝 모델을 활용한 관광지 활동 정보 공유 애플리케이션 (An Application for Sharing Travel Activities Information by Using Deep Learning Models)

  • 신지호;권은혜;류병욱;이병정
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.319-320
    • /
    • 2023
  • 일반적인 여행 커뮤니티는 사진과 텍스트 기반의 사용자 리뷰를 바탕으로 정보 공유를 한다. 본 연구에서는 관광지에서 수행한 활동을 한 문장의 형태로 공유하는 애플리케이션을 제안한다. ChatGPT를 활용하여 활동을 산책, 사진, 음식 등 9가지 태그로 분류하여 관광지가 가지는 특징을 용이하게 파악한다. 또한, 사용자가 작성한 활동을 임베딩하고 관광지 소개 글 벡터와 유사도를 비교하여 관광지를 추천한다. 본 애플리케이션을 통해 사용자가 긴 설명이나 사진 없이 관광지가 가지는 정보를 쉽게 공유하고 관광지 추천을 하는 새로운 여행 커뮤니티를 제공할 수 있을 것으로 기대한다.

사용자 정의 함수를 이용한 BERT 와 LSTM 기반 랜섬웨어 패밀리 분류 방법 연구 (A Study on BERT and LSTM-based Ransomware family classification methods using User-defined functions)

  • 김진하;최두섭;임을규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.377-380
    • /
    • 2024
  • 최근 악성코드 제작 기술의 고도화에 따라 악성코드의 변종이 전세계적으로 급격히 증가하고 있다. 이러한 대량의 악성코드를 신속하고 정확하게 탐지하기 위한 새로운 악성코드 탐지 기술에 관한 연구가 절실히 필요하다. 본 연구는 기존의 정적 분석과 동적 분석 방법의 한계를 극복하기 위한 방법을 제안한다. 신속한 데이터 수집을 위하여 정적 분석을 이용하여 사용자 정의 함수의 어셈블리어 데이터를 수집하고 BERT 로 임베딩하고 LSTM 으로 악성코드를 분류하는 모델을 제안한다. 분류 데이터는 행위가 정확한 랜섬웨어를 사용하였고 총 세 종류의 랜섬웨어를 분류하였고 다중 분류의 결과로 85.5%의 분류 정확도를 달성하였다.

임베딩 기반의 비정형 문서 핵심 영역 식별 (A method based on embedding to detect core regions in unstructured document)

  • 박민지;황영준;박병훈;신수연;이치훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.607-610
    • /
    • 2024
  • 기업의 운영에 있어서 기업의 핵심 정보가 유출되지 않도록 관리하는 것은 매우 중요하다. 따라서, 사내에서 유통되는 문서들에 대해 핵심적인 정보가 사외로 유출되지 않도록 관리하고 추적하는 것은 필수적이다. 특히, 데이터가 구조화되지 않고, 다양한 형식으로 구성되어있는 비정형 문서 내에서 핵심 정보를 식별하는 것은 기술적으로 어려움이 존재한다. 본 논문에서는 YOLOv8을 사용하여 비정형 문서 내에서 영역을 식별하고, 자연어 처리 모델인 Word2Vec을 사용하여 비정형 문서 내에서 핵심 내용을 식별한 후 이를 시각화함으로써 사내에서 유통되는 비정형 문서 내의 핵심 정보를 식별하고 추적하는 방법을 제안하였다.

양방향 언어 모델을 활용한 자연어 텍스트의 시간 관계정보 추출 기법 (Temporal Relationship Extraction for Natural Language Texts by Using Deep Bidirectional Language Model)

  • 임채균;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.81-84
    • /
    • 2019
  • 자연어 문장으로 작성된 문서들에는 대체적으로 시간에 관련된 정보가 포함되어 있을 뿐만 아니라, 문서의 전체 내용과 문맥을 이해하기 위해서 이러한 정보를 정확하게 인식하는 것이 중요하다. 주어진 문서 내에서 시간 정보를 발견하기 위한 작업으로는 시간적인 표현(time expression) 자체를 인식하거나, 시간 표현과 연관성이 있는 사건(event)을 찾거나, 시간 표현 또는 사건 간에서 발생하는 시간적 연관 관계(temporal relationship)를 추출하는 것이 있다. 문서에 사용된 언어에 따라 고유한 언어적 특성이 다르기 때문에, 만약 시간 정보에 대한 관계성을 고려하지 않는다면 주어진 문장들로부터 모든 시간 정보를 추출해내는 것은 상당히 어려운 일이다. 본 논문에서는, 양방향 구조로 학습된 심층 신경망 기반 언어 모델을 활용하여 한국어 입력문장들로부터 시간 정보를 발견하는 작업 중 하나인 시간 관계정보를 추출하는 기법을 제안한다. 이 기법은 주어진 단일 문장을 개별 단어 토큰들로 분리하여 임베딩 벡터로 변환하며, 각 토큰들의 잠재적 정보를 고려하여 문장 내에 어떤 유형의 시간 관계정보가 존재하는지를 인식하도록 학습시킨다. 또한, 한국어 시간 정보 주석 말뭉치를 활용한 실험을 수행하여 제안 기법의 시간 관계정보 인식 정확도를 확인한다.

  • PDF

복합재 초기 공극 결함에 따른 횡하중 강도 확률론적 분석 (Stochastic Strength Analysis according to Initial Void Defects in Composite Materials)

  • 지승민;조성욱;전성식
    • Composites Research
    • /
    • 제37권3호
    • /
    • pp.179-185
    • /
    • 2024
  • 본 연구는 Representative Volume Element(RVE) 모델을 사용하여 초기 공극 결함이 있는 단방향 섬유강화 복합재의 횡방향 인장 강도 변화에 대해 정량적 평가 및 조사되었다. 초기 공극 결함을 표본오차와 신뢰 수준을 기준으로 적정 표본의 수가 계산된 후, 총 5000개의 초기 공극 결함이 있는 RVE 모델이 표본 집단으로 생성되었다. 표본 집단은 차원 축소법과 밀도 기반 군집 분석을 통해 유사도 분석이 진행되었으며 편향되지 않은 표본 집단임이 확인 및 검증되었다. 검증된 표본 분석 결과는 복합재 구조의 신뢰성 해석에 적용될 수 있게 Weibull 분포로 표현되었다.

딥러닝과 Char2Vec을 이용한 문장 유사도 판별 (The Sentence Similarity Measure Using Deep-Learning and Char2Vec)

  • 임근영;조영복
    • 한국정보통신학회논문지
    • /
    • 제22권10호
    • /
    • pp.1300-1306
    • /
    • 2018
  • 본 연구는 자연어 처리 문제 중 하나인 문장 유사도 판별 문제를 딥러닝으로 해결하는 데에 있어 Char2Vec기반으로 문장을 전 처리하고 학습시켜 그 성능을 확인하고 대표적인 Word Embedding 모델 Word2Vec를 대체할 수 있는 가능성이 있는지 파악하고자 한다. 임의의 두 문장을 비교할 때 쓰는 딥러닝 구조로 Siamese Ma-STM 네트워크를 사용하였다. Word2Vec와 Char2Vec를 각각 기반으로 한 문장 유사도 판별 모델을 학습시키고 그 결과를 분석하였다. 실험 결과 Char2Vec를 기반으로 학습시킨 모델이 validation accuracy 75.1%을 보였고 Word2Vec를 기반으로 학습시킨 모델은 validation accuracy 71.6%를 보였다. 따라서 고 사양을 요구하는 Word2Vec대신 임베딩 레이어를 활용한 Char2Vec 기반의 전처리 모델을 활용함으로 분석 환경을 최적화 할 수 있다.

한국 전통문화 말뭉치구축 및 Bi-LSTM-CNN-CRF를 활용한 전통문화 개체명 인식 모델 개발 (Constructing for Korean Traditional culture Corpus and Development of Named Entity Recognition Model using Bi-LSTM-CNN-CRFs)

  • 김경민;김규경;조재춘;임희석
    • 한국융합학회논문지
    • /
    • 제9권12호
    • /
    • pp.47-52
    • /
    • 2018
  • 개체명 인식(Named Entity Recognition)시스템은 문서로부터 고유한 의미를 가질 수 있는 인명(PS), 지명(LC), 기관명(OG) 등의 개체명을 추출하고 추출된 개체명의 범주를 결정하는 시스템이다. 최근 딥러닝 방식을 이용한 개체명 인식 연구에서 입력 데이터의 앞, 뒤 방향을 고려한 LSTM 기반의 Bi-LSTM 모델로부터 출력 데이터 간의 전이 확률을 이용한 CRF를 결합한 방식의 Bi-LSTM-CRF가 우수한 성능을 보이고, 문자 및 단어 단위의 효율적인 임베딩 벡터생성에 관한 연구와 CNN, LSTM을 활용한 모델에서도 좋은 성능을 보여주고 있다. 본 연구에서는 한국어 개체명 인식시스템 성능 향상을 위해 자질을 보강한 Bi-LSTM-CNN-CRF 모델에 관해 기술하고 전통문화 말뭉치구축 방식에 대해 제안한다. 그리고 구축한 말뭉치를 한국어 개체명 인식 성능 향상을 위한 자질 보강 모델 Bi-LSTM-CNN-CRF로 학습한 결과에 대해 제안한다.

gradCam을 사용한 얼굴인식 신경망 (Face Recognition Network using gradCAM)

  • 백찬형;권지훈;정호엽
    • 스마트미디어저널
    • /
    • 제12권2호
    • /
    • pp.9-14
    • /
    • 2023
  • 이 논문에서는 gradCAM를 활용한 적은 데이터로 얼굴 전체 또는 더 다양한 feature을 사용하여 얼굴인식을 할 수 있는 새로운 앙상블 방법론을 제안하였다. 인공지능 모델의 판단 근거는 gradCAM을 통하여 saliency map으로 표현될 수 있다. 따라서 본 논문에서는 학습된 얼굴인식 모델이 어느 부분에 편향적으로 관찰하여 판단했는지 gradCAM으로 시각화한다. 계산된 saliency map에서 일정 수치 이상의 돌출된 부분을 추가 모델이 학습에 사용할 수 없도록 노이즈를 추가해 데이터를 생산한다. 노이즈를 추가해서 만든 데이터로 학습할 경우 노이즈 부분을 활용하여 학습을 할 수 없으므로 새로운 얼굴 부분을 사용하여 얼굴인식 네트워크를 학습하게 된다. 기본 데이터로 학습한 네트워크와 돌출 부분에 노이즈를 추가해서 학습한 모델은 얼굴의 서로 다른 얼굴 feature을 사용할 수밖에 없고, 앙상블로 결합했을 때 얼굴의 좀 더 다양한 부분들을 사용한 임베딩 feature를 만들 수 있다. 이 논문에서 제안하는 앙상블 기법은 일반적인 앙상블 모델보다 정확도는 1.79% 상승하였고 equal error rate (EER)은 0.01788 감소하였다.