• 제목/요약/키워드: 임베딩 기법

검색결과 134건 처리시간 0.032초

형태소 임베딩과 SVM을 이용한 뉴스 기사 정치적 편향성의 자동 분류 (Automatic Bias Classification of Political News Articles by using Morpheme Embedding and SVM)

  • 조단비;이현영;박지훈;강승식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.451-454
    • /
    • 2020
  • 딥러닝 기술을 이용한 정치적 성향의 편향성 분류를 위하여 신문 뉴스 기사를 수집하고, 머신러닝을 위한 학습 데이터를 구축하였다. 학습 데이터의 구축은 보수 성향과 진보 성향을 대표하는 6개 언론사의 뉴스에서 정치적 성향을 이진 분류 데이터로 구축하였다. 뉴스 기사의 수집 방법으로 최근 이슈들 중에서 정치적 성향과 밀접하게 관련이 있는 키워드 15개를 선정하고 이에 관한 뉴스 기사들을 수집하였다. 그 결과로 11,584개의 학습 및 실험용 데이터를 구축하였으며, 정치적 편향성 분류를 위한 머신러닝 모델을 설계하였다. 머신러닝 기법으로 학습 및 실험을 위해 형태소 단위의 임베딩을 이용하여 문장 및 문서 임베딩으로 확장하였으며, SVM(Support Vector Machine)을 이용하여 정치적 편향성 분류 실험을 수행한 결과로 75%의 정확도를 달성하였다.

뉴스 기사의 정치적 성향 판단을 위한 지식 그래프 임베딩 기법의 효과 분석 (Knowledge Graph Embedding Methods for Political Stance Prediction: Performance Evaluation)

  • 류성은;고윤용;김상욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.519-521
    • /
    • 2023
  • 온라인 뉴스 플랫폼의 발전은 에코 챔버(echo chamber) 효과와 정치적 양극화를 심화시키며, 이를 완화하기 위한 선행 연구로 뉴스 기사의 정치적 성향을 판단하는 연구가 필요하다. 기존 연구는 외부 지식 그래프를 활용하여 뉴스 기사의 텍스트 정보를 더욱 풍부하게 표현한다. 그러나, 외부 지식을 임베딩하는 지식 그래프 임베딩(knowledge graph embedding, KGE) 방법은 다양하며, 각 KGE 방법이 정치적 성향 예측 정확도에 미치는 효과에 대해서 충분히 연구되지 않았다. 본 논문에서는 정치적 성향 예측에 외부 지식의 활용을 최대화하기 위한 다양한 KGE 방법들의 효과를 분석한다. 실험 결과, 외부 지식 그래프 내의 개체들 간 복잡한 관계를 간단하고 정확하게 표현 가능한 ModE 방법을 활용하는 것이 정치적 성향 예측에 가장 효과적이라는 것을 확인하였다.

개인의 감성 분석 기반 향 추천 미러 설계 (Design of a Mirror for Fragrance Recommendation based on Personal Emotion Analysis)

  • 김현지;오유수
    • 한국산업정보학회논문지
    • /
    • 제28권4호
    • /
    • pp.11-19
    • /
    • 2023
  • 본 논문에서는 사용자의 감정 분석에 따른 향을 추천하는 스마트 미러 시스템을 제안한다. 본 논문은 자연어 처리 중 임베딩 기법(CounterVectorizer와 TF-IDF 기법), 머신러닝 분류 기법 중 최적의 모델(DecisionTree, SVM, RandomForest, SGD Classifier)을 융합하여 시스템을 구축하고 그 결과를 비교한다. 실험 결과, 가장 높은 성능을 보이는 SVM과 워드 임베딩을 파이프라인 기법으로 감정 분류기 모델에 적용한다. 제안된 시스템은 Flask 웹 프레임워크를 이용하여 웹 서비스를 제공하는 개인감정 분석 기반 향 추천 미러를 구현한다. 본 논문은 Google Speech Cloud API를 이용하여 사용자의 음성을 인식하고 STT(Speech To Text)로 음성 변환된 텍스트 데이터를 사용한다. 제안된 시스템은 날씨, 습도, 위치, 명언, 시간, 일정 관리에 대한 정보를 사용자에게 제공한다.

1-포트 측정을 기반으로 한 8-Term Error De-Embedding 기법 (De-Embedding Method Using 8-Term Error Based on 1-Port Calculation)

  • 송민수;김광호;나완수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.125-126
    • /
    • 2015
  • 통신 시스템에서의 더 늘어난 대역폭(Band Width)의 수요로 인해 집적회로(Integrated Circuit)에서 더 높은 동작 주파수(Operating Frequency)를 필요로 하게 되었다. 고주파 영역에서는 SRF(Self Resonance Frequency) 문제와 소자 값의 정확성(Accuracy)에 대한 문제 때문에 정수소자(Lumped Element)를 이용하여 해석을 할 수 없으며 이로 인하여 어떠한 회로의 전기적 특성을 평가함에 있어서 전송선로(Transmission Line)를 이용하여 해석을 하는 것은 중요한 역할을 하게 되었다. 이러한 해석을 위해 순수한 내부 특성을 얻기 위하여 디 임베딩(De-Embedding)이라는 기법이 사용되고 있으나, 알려진 몇 가지의 방법들은 인터커넥터 부분을 완벽히 나타내지 못한다. 따라서 본 논문에서는 1-Port 측정을 기반으로 한 8-Term Error을 이용한 디 임베딩(De-Embedding) 방법을 이용하여 넓은 주파수 영역에서의 교정 값을 얻는 방법에 대하여 소개하고자 한다.

  • PDF

딥러닝 기법을 이용한 낚시성 기사 제목 분류에 대한 연구 (A study on classification of hooking headlines using deep learning techniques)

  • 최용석;최한나;신지혜;정창민;안정연;유채영;임채은;이공주
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.15-17
    • /
    • 2015
  • 본 논문은 낚시성 기사 제목과 비낚시성 기사 제목을 판별하기 위한 시스템을 제시한다. 서포트 벡터 머신(SVM)을 이용하여 기사 제목을 분류하며, 분류하는 기준은 딥러닝 기법중의 하나인 워드임베딩(Word Embedding), 군집화 알고리즘 중 하나인 K 평균 알고리즘(K-means)을 이용한다. 자질로서 기사 제목의 단어를 사용하였으며, 정확도가 83.78%이다. 결론적으로 낚시성 기사 제목에는 낚시를 유도하는 특별한 단어들이 존재함을 알 수 있다.

  • PDF

텍스트 데이터의 정보 손실을 방지하기 위한 군집화 기반 언더샘플링 기법 (A Clustering-based Undersampling Method to Prevent Information Loss from Text Data)

  • 김종휘;신사임;장진예
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.251-256
    • /
    • 2022
  • 범주 불균형은 분류 모델이 다수 범주에 편향되게 학습되어 소수 범주에 대한 분류 성능을 떨어뜨리는 문제를 야기한다. 언더 샘플링 기법은 다수 범주 데이터의 수를 줄여 소수 범주와 균형을 이루게하는 대표적인 불균형 해결 방법으로, 텍스트 도메인에서의 기존 언더 샘플링 연구에서는 단어 임베딩과 랜덤 샘플링과 같은 비교적 간단한 기법만이 적용되었다. 본 논문에서는 트랜스포머 기반 문장 임베딩과 군집화 기반 샘플링 방법을 통해 텍스트 데이터의 정보 손실을 최소화하는 언더샘플링 방법을 제안한다. 제안 방법의 검증을 위해, 감성 분석 실험에서 제안 방법과 랜덤 샘플링으로 추출한 훈련 세트로 모델을 학습하고 성능을 비교 평가하였다. 제안 방법을 활용한 모델이 랜덤 샘플링을 활용한 모델에 비해 적게는 0.2%, 많게는 2.0% 높은 분류 정확도를 보였고, 이를 통해 제안하는 군집화 기반 언더 샘플링 기법의 효과를 확인하였다.

  • PDF

신경망 기반 텍스트 모델링에 있어 순차적 결합 방법의 한계점과 이를 극복하기 위한 담화 기반의 결합 방법 (A Discourse-based Compositional Approach to Overcome Drawbacks of Sequence-based Composition in Text Modeling via Neural Networks)

  • 이강욱;한상규;맹성현
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권12호
    • /
    • pp.698-702
    • /
    • 2017
  • 자연 언어 처리(Natural Language Processing) 분야에 심층 신경망(Deep Neural Network)이 소개된 이후, 단어, 문장 등의 의미를 나타내기 위한 분산 표상인 임베딩(Embedding)을 학습하기 위한 연구가 활발히 진행되고 있다. 임베딩 학습을 위한 방법으로는 크게 문맥 기반의 텍스트 모델링 방법과, 기학습된 임베딩을 결합하여 더 긴 텍스트의 분산 표상을 계산하고자 하는 결합 기반의 텍스트 모델링 방법이 있다. 하지만, 기존 결합 기반의 텍스트 모델링 방법은 최적 결합 단위에 대한 고찰 없이 단어를 이용하여 연구되어 왔다. 본 연구에서는 비교 실험을 통해 문서 임베딩 생성에 적합한 결합 기법과 최적 결합 단위에 대해 알아본다. 또한, 새로운 결합 방법인 담화 분석 기반의 결합 방식을 제안하고 실험을 통해 기존의 순차적 결합 기반 신경망 모델 대비 우수성을 보인다.

대용량 컴뮤트 타임 임베딩을 위한 연산 속도 개선 방식 제안 (Proposing the Methods for Accelerating Computational Time of Large-Scale Commute Time Embedding)

  • 한희일
    • 전자공학회논문지
    • /
    • 제52권2호
    • /
    • pp.162-170
    • /
    • 2015
  • 컴뮤트 타임 임베딩을 구현하려면 그래프 라플라시안 행렬의 고유값과 고유벡터를 구하여야 하는데, $o(n^3)$의 계산량이 요구되어 대용량 데이터에는 적용하기 어려운 문제가 있다. 이를 줄이기 위하여 표본화 과정을 통하여 크기가 줄어든 그래프 라플라시안 행렬에서 구한 다음, 원래의 고유값과 고유벡터를 근사화시키는 Nystr${\ddot{o}}$m 기법을 주로 채택한다. 이 과정에서 많은 오차가 발생하는데, 이를 개선하기 위하여 본 논문에서는 그래프 라플라시안 대신에 가중치 행렬을 표본화하고 이로부터 구한 고유값과 고유벡터를 그래프 라플라시안의 고유값과 고유벡터로 변환하는 기법을 이용하여 대용량 데이터로 구성된 스펙트럴 그래프를 근사적으로 컴뮤트 타임 임베딩하는 기법을 제안한다. 하지만, 이 방식도 스펙트럼 분해를 계산하여야 하므로 데이터의 크기가 증가하면 적용하기 어려운 문제가 발생한다. 이의 대안으로, 스펙트럼 분해를 계산하지 않고도 데이터 집합의 크기에 영향을 받지 않으면서 컴뮤트 타임을 근사적으로 계산하는 방식을 구현하고 이들의 특성을 실험적으로 분석한다.

지식 간 내용적 연관성 파악 기법의 지식 서비스 관리 접목을 위한 정량적/정성적 고려사항 검토 (Quantitative and Qualitative Considerations to Apply Methods for Identifying Content Relevance between Knowledge Into Managing Knowledge Service)

  • 유기동
    • 한국전자거래학회지
    • /
    • 제26권3호
    • /
    • pp.119-132
    • /
    • 2021
  • 내용적 연관성에 기반한 연관지식의 파악은 핵심 지식에 대한 서비스와 보안의 기본적인 기능이다. 본 연구는 내용적 연관성을 기준으로 연관지식을 파악하는 기존의 방식, 즉 키워드 기반 방식과 워드임베딩 방식의 연관문서 네트워크 구성 성능을 비교하여 어떤 방식이 정량적/정성적 측면에서 우월한 성능을 나타내는가를 검토한다. 검토 결과 키워드 기반 방식은 핵심 문서 파악 능력과 시맨틱 정보 표현 능력 면에서 우월한 성능을, 워드임베딩 방식은 F1-Score와 Accuracy, 연관성 강도 표현 능력, 대량 문서 처리 능력 면에서 우월한 성능을 나타냈다. 본 연구의 결과는 기업과 사용자의 요구를 반영하여 보다 현실적인 연관지식 서비스 관리에 활용될 수 있다.

복잡계 동기화 기법 (The Complex Synchronization Method)

  • 배영철;김이곤;구영덕
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.349-352
    • /
    • 2005
  • 복잡계에서의 동기화는 기본적으로 카오스 신호에서의 동기화 이론에 근거를 두고 발전하고 있으나 카오스 신호보다 복잡도가 커서 동기화하는데 어려움이 있다. 이에 본 본문은 복잡계에서 동기화 기법을 적용하기 위한 새로운 임베딩 구동 동기화 기법을 제안하고 이 동기화 기법을 적용하여 복잡계에서 동기화 결과를 알아보고자 한다.

  • PDF