• 제목/요약/키워드: 임베딩 기법

검색결과 134건 처리시간 0.031초

Word2Vec, GloVe 및 RoBERTa 등의 모델을 활용한 한국어 문장 임베딩 성능 비교 연구 (A Comparative Study on the Performance of Korean Sentence Embedding)

  • 석주리;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.444-449
    • /
    • 2021
  • 자연어처리에서 임베딩이란 사람의 언어를 컴퓨터가 이해할 수 있는 벡터로 변환한 것으로 자연어처리의 필수 요소 중 하나이다. 본 논문에서는 단어 기반 임베딩인 Word2Vec, GloVe, fastText와 문장 기반 임베딩 기법인 BERT와 M-USE, RoBERTa를 사용하여 한국어 문장 임베딩을 만들어 NSMC, KorNLI, KorSTS 세 가지 태스크에 대한 성능을 확인해보았다. 그 결과 태스크에 따라서 적합한 한국어 문장 임베딩 기법이 달라지며, 태스크에 따라서는 BERT의 평균 임베딩보다 GloVe의 평균 임베딩과 같은 단어 기반의 임베딩이 좋은 성능을 보일 수 있음을 확인할 수 있었다.

  • PDF

영상의 지역성과 인접 픽셀 차분 시퀀스를 이용하는 가역 데이터 임베딩 기법 (Reversible Data Embedding Algorithm Using the Locality of Image and the Adjacent Pixel Difference Sequence)

  • 정수목
    • 한국정보전자통신기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.573-577
    • /
    • 2016
  • 본 논문에서는 영상의 지역성과 인접 픽셀 차분시퀀스를 이용하는 가역 데이터 임베딩 기법을 제안하였다. 자연영상에는 일반적으로 지역성이 존재한다. 영상의 지역성을 이용하여 인접한 픽셀 값을 예측하는 기법을 기존의 기법인 APD(Adjacent Pixel Difference) 기법에 적용하여 임베딩 가능한 데이터 량을 증가 시키고 다양한 레벨로 데이터 임베딩을 가능하게 하는 가역 데이터 임베딩 기법을 제안하였다. 실험결과를 통하여 제안된 기법의 우수성을 확인하였다.

인접성 벡터를 이용한 트리플 지식 그래프의 임베딩 모델 개선 (Improving Embedding Model for Triple Knowledge Graph Using Neighborliness Vector)

  • 조새롬;김한준
    • 한국전자거래학회지
    • /
    • 제26권3호
    • /
    • pp.67-80
    • /
    • 2021
  • 그래프 표현 학습을 위한 노드 임베딩 기법은 그래프 마이닝에서 양질의 결과를 얻는 데 중요한 역할을 한다. 지금까지 대표적인 노드 임베딩 기법은 동종 그래프를 대상으로 연구되었기에, 간선 별로 고유한 의미를 갖는 지식 그래프를 학습하는 데 어려움이 있었다. 이러한 문제를 해결하고자, 기존 Triple2Vec 기법은 지식 그래프의 노드 쌍과 간선을 하나의 노드로 갖는 트리플 그래프를 학습하여 임베딩 모델을 구축한다. 하지만 Triple2Vec 임베딩 모델은 트리플 노드 간 관련성을 단순한 척도로 산정하기 때문에 성능을 높이는데 한계를 가진다. 이에 본 논문은 Triple2Vec 임베딩 모델을 개선하기 위한 그래프 합성곱 신경망 기반의 특징 추출 기법을 제안한다. 제안 기법은 트리플 그래프의 인접성 벡터(Neighborliness Vector)를 추출하여 트리플 그래프에 대해 노드 별로 이웃한 노드 간 관계성을 학습한다. 본 논문은 DBLP, DBpedia, IMDB 데이터셋을 활용한 카테고리 분류 실험을 통해, 제안 기법을 적용한 임베딩 모델이 기존 Triple2Vec 모델보다 우수함을 입증한다.

BERT 의 웹 문서 질의 응답 성능 향상을 위한 HTML 태그 스택 및 HTML 임베딩 기법 설계 (A Design of HTML Tag Stack and HTML Embedding Method to Improve Web Document Question Answering Performance of BERT)

  • 목진왕;이현섭
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.583-585
    • /
    • 2022
  • 최근 기술의 발전으로 인해 자연어 처리 모델의 성능이 증가하고 있다. 그에 따라 평문 지문이 아닌 KorQuAD 2.0 과 같은 웹 문서를 지문으로 하는 기계 독해 과제를 해결하려는 연구가 증가하고 있다. 최근 기계 독해 과제의 대부분의 모델은 트랜스포머를 기반으로 하는 추세를 보인다. 그 중 대표적인 모델인 BERT 는 문자열의 순서에 대한 정보를 임베딩 과정에서 전달받는다. 한편 웹 문서는 태그 구조가 존재하므로 문서를 이해하는데 위치 정보 외에도 태그 정보도 유용하게 사용될 수 있다. 그러나 BERT 의 기존 임베딩은 웹 문서의 태그 정보를 추가적으로 모델에 전달하지 않는다는 문제가 있었다. 본 논문에서는 BERT 에 웹 문서 태그 정보를 효과적으로 전달할 수 있는 HTML 임베딩 기법 및 이를 위한 전처리 기법으로 HTML 태그 스택을 소개한다. HTML 태그 스택은 HTML 태그의 정보들을 추출할 수 있고 HTML 임베딩 기법은 이 정보들을 BERT 의 임베딩 과정에 입력으로 추가함으로써 웹 문서 질의 응답 과제의 성능 향상을 기대할 수 있다.

감성 분류를 위한 워드 임베딩 성능 비교 (Performance Comparison of Word Embeddings for Sentiment Classification)

  • 윤혜진;구자환;김응모
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.760-763
    • /
    • 2021
  • 텍스트를 자연어 처리를 위한 모델에 적용할 수 있게 언어적인 특성을 반영해서 단어를 수치화하는 방법 중 단어를 벡터로 표현하여 나타내는 워드 임베딩은 컴퓨터가 인간의 언어를 이해하고 분석 가능한 언어 모델의 필수 요소가 되었다. Word2vec 등 다양한 워드 임베딩 기법이 제안되었고 자연어를 처리할 때에 감성 분류는 중요한 요소이지만 다양한 임베딩 기법에 따른 감성 분류 모델에 대한 성능 비교 연구는 여전히 부족한 실정이다. 본 논문에서는 Emotion-stimulus 데이터를 활용하여 7가지의 감성과 2가지의 감성을 5가지의 임베딩 기법과 3종류의 분류 모델로 감성 분류 학습을 진행하였다. 감성 분류를 위해 Logistic Regression, Decision Tree, Random Forest 모델 등과 같은 보편적으로 많이 사용하는 머신러닝 분류 모델을 사용하였으며, 각각의 결과를 훈련 정확도와 테스트 정확도로 비교하였다. 실험 결과, 7가지 감성 분류 및 2가지 감성 분류 모두 사전훈련된 Word2vec가 대체적으로 우수한 정확도 성능을 보였다.

워드 임베딩 기반 연구 논문 분류 기법 (Research Paper Classification Scheme based on Word Embedding)

  • 비스와스 딥또;길준민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.494-497
    • /
    • 2021
  • 텍스트 분류(text classification)는 원시 텍스트 데이터로부터 정보를 추출할 수 있는 기술에 기반하여 많은 양의 텍스트 데이터를 관심 영역으로 분류하는 것으로 최근에 각광을 받고 있다. 본 논문에서는 워드 임베딩(word embedding) 기법을 이용하여 특정 분야의 연구 논문을 분류하고 추천하는 기법을 제안한다. 워드 임베딩으로 CBOW(Continuous Bag-of-Word)와 Sg(Skip-gram)를 연구 논문의 분류에 적용하고 기존 방식인 TF-IDF(Term Frequency-Inverse Document Frequency)와 성능을 비교 분석한다. 성능 평가 결과는 워드 임베딩에 기반한 연구 논문 분류 기법이 TF-IDF에 기반한 연구 논문 분류 기법보다 좋은 성능을 가진다는 것을 나타낸다.

(n,k)-스타 그래프에서의 새로운 링 임베딩 및 결함허용 임베딩으로의 응용 (New Ring Embedding and its Application into Fault-tolerant Embedding in (n,k)-star Graphs)

  • 장정환;좌경룡
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제27권3호
    • /
    • pp.313-323
    • /
    • 2000
  • 본 논문에서는 상호연결망 그래프 중 하나인 (n,k)-스타 그래프에 대한 링 임베딩 문제를 다룬다. (n,k)-스타 그래프에 대한 링 임베딩 전략의 유연성을 개선한 새로운 임베딩 기법을 제시하고, 아울러 에지에 결함을 갖는 경우의 결함허용 링 임베딩 문제에 응용 가능함을 보여줌으로써 본 기법의 확장성에서의 우수함을 밝히고자 한다. 본 논문에서 다루고 있는 사이클 특성 관련 연구는 병렬처리 분야에서의 멀티캐스팅 등과 같이 내재된 사이클 특성을 활용하는 분야에 응용이 가능하다.

  • PDF

워드 임베딩과 딥러닝 기법을 이용한 SMS 문자 메시지 필터링 (SMS Text Messages Filtering using Word Embedding and Deep Learning Techniques)

  • 이현영;강승식
    • 스마트미디어저널
    • /
    • 제7권4호
    • /
    • pp.24-29
    • /
    • 2018
  • 딥러닝에서 자연어 처리를 위한 텍스트 분석 기법은 워드 임베딩을 통해 단어를 벡터 형태로 표현한다. 본 논문에서는 워드 임베딩 기법과 딥러닝 기법을 이용하여 SMS 문자 메시지를 문서 벡터로 구성하고 이를 스팸 문자 메시지와 정상적인 문자 메시지로 분류하는 방법을 제안하였다. 유사한 문맥을 가진 단어들은 벡터 공간에서 인접한 벡터 공간에 표현되도록 하기 위해 전처리 과정으로 자동 띄어쓰기를 적용하고 스팸 문자 메시지로 차단되는 것을 피하기 위한 목적으로 음절의 자모를 특수기호로 왜곡하여 맞춤법이 파괴된 상태로 단어 벡터와 문장 벡터를 생성하였다. 또한 문장 벡터 생성 시 CBOW와 skip gram이라는 두 가지 워드 임베딩 알고리즘을 적용하여 문장 벡터를 표현하였으며, 딥러닝을 이용한 스팸 문자 메시지 필터링의 성능 평가를 위해 SVM Light와 정확도를 비교 측정하였다.

개선된 네이버 임베딩에 의한 초해상도 기법 (Super Resolution Technique Through Improved Neighbor Embedding)

  • 엄경배
    • 디지털콘텐츠학회 논문지
    • /
    • 제15권6호
    • /
    • pp.737-743
    • /
    • 2014
  • 단일 영상 초해상도 기법에는 보간 기반 방법과 표본 기반 방법 등이 있다. 보간 기반 방법들은 간결성에 강점을 가지고 있으나, 이들 방법들은 선지식을 이용할 수 없기 때문에 톱니 모양의 윤곽선을 가진 고해상도 영상을 생성하는 경향이 있다. 표본 기반 초해상도 기법에서는 최근방 기반 알고리즘들이 널리 이용되어 지고 있다. 그들 중, 네이버 임베딩은 지역적 선형 임베딩이라는 매니폴드 학습 방법의 개념과 같다. 그러나, 네이버 임베딩은 국부 학습 데이터 집합의 크기가 너무 작은데에 따른 빈약한 일반화 능력으로 인하여, 시각적으로나 정량적인 척도에 의해 취약한 성능을 보인다. 본 논문에서는 이와 같은 문제점을 해결하기 위해 개선된 네이버 임베딩 알고리즘을 제안하였다. 저해상도 입력 영상이 주어지면 고해상도 버전의 화소 값들은 개선된 네이버 임베딩 알고리즘에 의해 구해진다. 실험 결과 제안된 방법이 바이큐빅 보간법이나 네이버 임베딩에 비해 정량적인 척도 및 시각적으로도 우수한 결과를 보였다.

효율적인 가역 데이터 은닉 기법 (An Efficient Reversible Data Hiding Algorithm)

  • 정수목
    • 서비스연구
    • /
    • 제6권1호
    • /
    • pp.71-81
    • /
    • 2016
  • Cover image에 데이터를 임베딩 하여 stego-image를 생성하고, stego-image로부터 cover image를 손실 없이 복원하며 임베딩 된 데이터를 손실 없이 복원할 수 있는 가역 데이터 은닉기법의 성능을 개선하는 효율적인 기법을 제안하였다. 제안된 기법에서의 임베딩 된 데이터 크기는 이전의 기법에 비하여 더 크고, stego-image의 PSNR값은 48dB보다 더 크게 되는 것이 보장된다. 실험을 통하여 제안된 기법의 성능을 확인하였다.