자율주행차량에서 LiDAR와 같은 3D 데이터 센서를 사용한 주변 물체인식 알고리즘의 정확도는 많은 연구를 통해 상승하고 있으나 그에 따라 높은 성능의 하드웨어와 복잡한 구조를 요구하게 되었다. 이러한 물체인식 알고리즘은 주행 중 많은 프로세서를 수행하고 관리해야 하는 자율주행차량의 메인 프로세서에 큰 부하로 작용한다. 이러한 부하를 감소시킴과 동시에 3D 센서 데이터의 장점을 활용하기 위하여, 3D 센서 데이터에서 물리적 특성을 추출하고 이를 이용하여 생성한 ROI를 이용하여 2D 데이터 기반 인식을 제안한다. 기본 이미지에서 밝기 값을 50% 감소시킨 환경에서 기존 2D 기반 모델 대비 5.3% 높은 정확도와 28.57% 감소한 수행 시간을 보였다. 기본 이미지에서 3D 기반 모델 대비 2.46% 낮은 정확도를 가지는 대신 6.25% 감소한 수행 시간을 가진다.
인공지능 기술의 적용으로 로봇이 실생활에서 효율성 높은 서비스를 제공할 수 있게 되었다. 본 연구에서는 단순 반복적 작업을 하는 산업용 매니퓰레이터와 달리 서비스 로봇 분야에서 장소의 제약 없이 단독으로 또는 협업하여 사용하기 위한 6자유도 로봇 팔의 설계방법과 지능적인 물체 검출 및 이동 방법을 제시하고 성능을 검증하였다. 로봇 팔에 포함된 임베디드 보드의 ROS 환경에서 깊이 카메라와 딥러닝을 이용하여 로봇팔은 물체를 검출하고, 역기구학 해석을 통해 물체 영역으로 이동한다. 또한 물체와 접촉 시 힘센서 값의 분석을 통해 물체를 정확히 잡고 이동하는 동작이 가능하게 하였다. 제작한 로봇 팔에 대한 성능검증을 위하여 딥러닝과 영상처리를 통한 물체의 정확한 위치 산출, 모터 제어 및 물체 분리에 대한 실험을 하였으며, 실제 동작 여부를 확인하기 위하여 카페에서 흔히 사용하는 다양한 컵들을 분리하는 실험을 수행하였다.
3D 물체검출은 대체로 자동차, 버스, 사람, 가구 등과 같은 비교적 크기가 큰 데이터를 검출하는 것을 목표로 두어 작은 객체 검출에는 취약하다. 또한, 임베디드 기기와 같은 자원이 제한적인 환경에서는 방대한 연산량 때문에 모델의 적용이 어렵다. 본 논문에서는 1개의 레이어만을 사용하여 로컬 특징에 중점을 두어 작은 객체 검출의 정확도를 높였으며, 제안한 사전 학습된 큰 네트워크에서 작은 네트워크로의 지식 증류법과 파라미터 크기에 따른 적응적 양자화를 통해 추론 속도를 향상시켰다. 제안 모델은 SUN RGB-D Val 와 자체 제작한 모형 사과나무 데이터 셋을 이용하여 성능을 평가하였고 최종적으로 mAP@0.25에서 62.04%, mAP@0.5에서 47.1%의 정확도 성능을 보였으며, 추론 속도는 120.5 scenes per sec로 빠른 실시간 처리속도를 보였다.
시각 정보를 이용한 기계 학습 기술은 주변 상황 인지, 결함 감지, 보안 그리고 사용자 분석과 같이 산업, 서비스 분야에서 활용성이 높아졌다. 그 중 CCTV 영상 분석을 통한 사용자 분석은 시각 정보를 잘 활용하는 실용적인 부분이라고 할 수 있다. 또한 이러한 임베디드 환경에서의 실용성을 높이기 위한 신경 회로망 경량화에 대한 연구가 지속되고 있다. 본 논문에서는 디스플레이형 자판기인 키오스크에서 활용할 수 있는 사람 및 얼굴 검출과 사용자의 나이 및 성별 분류 시스템을 제안한다. 제안하는 모델은 MobileNet, YOLOv2, 생략 연결을 기반으로 설계되었으며, 검출과 분류 망을 개별적으로 학습한 뒤 결합한 2-stage 구조를 띈다. 또한 주의 집중 기법을 사용하여 시스템의 성능을 향상시키고자 하였다. 제안하는 시스템에 대한 구동과 성능 평가는 소형 그래픽 처리 유닛인 Nvidia Jetson Nano에서 진행하였다.
최근 렌더링을 위한 플랫폼으로 멀티 클라우드 환경이 주목받고 있다. 이는 렌더링의 연산량이 시간에 따라 변동 폭이 큰 반면 각 렌더링 작업은 독립적으로 수행될 수 있기 때문이다. 그러나, 멀티 클라우드 렌더링은 대용량의 렌더링 입력 데이터에 대한 일관성을 유지하면서 실시간으로 데이터를 전송해야 하는 어려운 점이 존재한다. 본 논문에서는 멀티 클라우드 렌더링을 위한 새로운 분산 파일 시스템을 개발하였다. 개발된 파일 시스템은 로컬 머신에 파일 서버를 두어 렌더링 입력 파일에 대한 버전을 관리하고, 클라우드에 캐쉬 관리자를 두어 파일의 버전을 고려한 분산 협력 캐슁을 수행한다. 렌더링 워크로드를 이용한 실측 실험을 통해 개발된 파일 시스템이 NFS 대비 745%의 I/O 처리율을 나타내는 것을 확인했으며, 업로드 방식과 비교할 때 평균 56%의 실행시간 개선이 있는 것으로 확인되었다.
본 논문에서는 스테레오 영상정합을 위하여 개선된 영역기반, 에너지 기반 알고리즘, 학습기반 구조의 정합 오류율을 비교하였다. 영역기반으로 census transform(CT), 에너지 기반으로 belief propagation(BP) 알고리즘을 선정하였다. 기존 알고리즘을 개선하고 모바일 시스템에서 스테레오 영상정합에 활용가능 하도록 임베디드 프로세서 환경에서 구현하였다. 비교 대상이 되는 학습기반의 경우에 도 적은 규모의 파라메터를 활용하는 신경망 구조를 채택하였다. 세 가지 정합방법의 오류율 비교를 위해 테스트 이미지로 Middlebury 데이터 세트 가운데 Tsukuba를 선정하고 정합 성능의 정확한 비교를 위해 비폐색, 불연속, 시차 오류율 등으로 세분화하였다. 실험 결과 CT 매칭의 오차율은 기존 알고리즘과 수정된 알고리즘으로 비교하였을 때 약 11% 성능 개선되었다. BP 매칭은 오류율에서 기존 CT 에 비하여 약 87% 우수하였다. 신경망을 이용한 학습기반과 비교 하였을 때 BP 매칭이 약 31% 우수함을 보였다.
고성능의 보행 로봇에 관한 연구가 활발하게 이루어지고 있으며 4족 보행 로봇은 비평탄 지형에서 이동성과 적응력이 뛰어나 많은 관심을 받고 있지만 높은 비용으로 도입과 활용성에 어려움이 있다. 본 논문에서는 저비용의 4족 로봇에 지능적 기능을 적용하여 활용도를 높이기 위해 임베디드 보드에 IMU와 강화학습을 탑재하여 비평탄 지형 극복능력을 개선하고 카메라와 딥러닝을 이용하여 객체를 자동으로 검출하는 방법을 제시한다. 로봇은 4족 포유류 동물의 다리 형태로 구성되고 각 다리는 3 자유도를 가진다. 설계된 3D 모델로 시뮬레이션 환경에서 복잡한 지형을 학습시키고 실제 로봇에 적용한다. 본 연구방법의 적용을 통해 평탄 지형과 비평탄 지형의 보행 능력에 크게 차이가 나지 않음을 확인하였으며 제한된 실험조건에서 실시간으로 사람 검출을 수행하는 동작을 확인하였다.
본 연구는 키오스크 사용 증가로 인한 변화에 대응하기 위해 사용자 특성을 고려한 맞춤형 동적 키오스크 화면을 제공하는 것을 목표로 한다. 디지털 취약계층인 시각장애인, 노인, 어린이, 휠체어 사용자 등의 특성에 따른 화면 구성의 최적화를 위해 객체 탐지, 걸음걸이 인식, 음성발화 인식기술을 종합하여 사용자의 특성(휠체어 사용 여부, 시각 장애, 연령 등)을 실시간으로 분석하고, 이를 기반으로 9개의 카테고리로 사용자를 분류한다. 키오스크 화면은 사용자의 특성에 따라 동적으로 조정되어 효율적인 서비스 제공이 가능하다. 본 연구는 임베디드 환경에서 시스템 통신 및 운용이 이루어졌으며, 사용된 객체 탐지, 걸음걸이 인식, 음성발화 인식 기술은 각각 74%, 98.9%, 96%의 정확도를 보여준다. 제안된 기술은 프로토타입을 구현하여 그 효용성을 검증하였으며, 이를 통해 본 연구가 디지털 격차의 축소와 사용자 친화적인 "배리어 프리 키오스크" 서비스 제공의 가능성을 보였다.
본 연구에서는 움직임 센서 모듈과 딥러닝을 활용하여 반려견의 행동을 실시간으로 인식하고 분석하는 방법을 제안한다. 일반적으로 반려견의 행동을 파악하는 홈 CCTV(Closed-Circuit Television)는 개인의 사생활 보호 문제와 보안 이슈가 있어 이를 극복하기 위한 새로운 기술의 필요성이 제기되고 있다. 본 논문에서는 움직임 센서에서 측정되는 데이터를 기반으로 반려견의 행동을 분석하고 케어할 수 있는 시스템을 제안한다. 본 연구에서는 MLP(Multi-Layer Perceptron)와 CNN(Convolutional Neural Network) 모델을 비교하여 반려견 행동 분석에 적합한 모델을 선정하고 최적화를 하였으며, 실험 결과, 제안된 MLP 모델은 평균 82.19%의 정확도를 보이는 것을 확인하였으며, 모델 경량화를 통해 임베디드 환경에서 효율적으로 활용될 수 있음을 확인하였다.
본 연구는 양액 내 존재하는 다량 영양소의 농도를 실시간으로 측정하기 위해 이온 선택 전극 (ISE) 으로 구성된 임베디드 시스템의 개발을 보여준다. NO3, K 및 Ca 이온을 감지하기위한 PVC ISE, H2PO4를 감지하기위한 코발트 전극, 기준 전극, 샘플 용액이 담기는 챔버, 펌프 및 밸브를 사용하여 측정하는 시스템으로 구성된다. 양액 샘플양 조절과 데이터 수집을 위해서 데이터 Due 보드가 사용되었고, 각각의 샘플 측정 전에, 측정 중 발생하는 드리프트를 최소화시키기 위해 2 점 정규화 방법을 사용하였다. PVC 멤브레인을 기반으로 한 NO3 및 K 전극의 농도 예측 성능은 표준 분석기의 결과와 근접한 일치 (R2 = 0.99) 나타내며 만족스러운 결과를 나타냈다. 하지만, Ca II 이온 투과체 제조된 Ca 전극은 고농도 양액 농도에서 Ca 농도를 55 %로 낮게 측정하였다. 코발트 전극 기반 인산 측정은 반복측정 중에 발생한 코발트 전극의 불안정한 신호로 인해 표준 방법과 비교하여 45 ~ 155 mg / L의 인산 농도 범위에서 24.7 ± 9.26 %의 비교적 높은 오차를 나타냈다. 수경 P 감지의 예측 능력을 향상시키기 위해 코발트 전극의 신호 컨디셔닝에 대한 추가 연구가 필요함으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.