• Title/Summary/Keyword: 임무 설계

Search Result 680, Processing Time 0.031 seconds

Reliability Prediction of Failure Modes due to Pressure in Solid Rocket Case (고체로켓 케이스 내압파열 고장모드의 신뢰도예측)

  • Kim, Dong-Seong;Yoo, Min-Young;Kim, Hee-Seong;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.635-642
    • /
    • 2014
  • In this paper, an efficient technique is developed to predict failure probability of three failure modes(case rupture, fracture and bolt breakage) related to solid rocket motor case due to the inner pressure during the mission flight. The overall procedure consists of the steps: 1) design parameters affecting the case failure are identified and their uncertainties are modelled by probability distribution, 2) combustion analysis in the interior of the case is carried out to obtain maximum expected operating pressure(MEOP), 3) stress and other structural performances are evaluated by finite element analysis(FEA), and 4) failure probabilities are calculated for the above mentioned failure modes. Axi-symmetric assumption for FEA is employed for simplification while contact between bolted joint is accounted for. Efficient procedure is developed to evaluate failure probability which consists of finding first an Most Probable Failure Point(MPP) using First-Order Reliability Method(FORM), next making a response surface model around the MPP using Latin Hypercube Sampling(LHS), and finally calculating failure probability by employing Importance Sampling.

Optimization for Concurrent Spare Part with Simulation and Multiple Regression (시뮬레이션과 다중 회귀모형을 이용한 동시조달수리부속 최적화)

  • Kim, Kyung-Rok;Yong, Hwa-Young;Kwon, Ki-Sang
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.79-88
    • /
    • 2012
  • Recently, the study in efficient operation, maintenance, and equipment-design have been growing rapidly in military industry to meet the required missions. Through out these studies, the importance of Concurrent Spare Parts(CSP) are emphasized. The CSP, which is critical to the operation and maintenance to enhance the availability, is offered together when a equipment is delivered. Despite its significance, th responsibility for determining the range and depth of CSP are done from administrative decision rather than engineering analysis. The purpose of the paper is to optimize the number of CSP per item using simulation and multiple regression. First, the result, as the change of operational availability, was gained from changing the number of change in simulation model. Second, mathematical regression was computed from the input and output data, and the number of CSP was optimized by multiple regression and linear programming; the constraint condition is the cost for optimization. The advantage of this study is to respond with the transition of constraint condition quickly. The cost per item is consistently altered in the development state of equipment. The speed of analysis, that simulation method is continuously performed whenever constraint condition is repeatedly altered, would be down. Therefore, this study is suitable for real development environment. In the future, the study based on the above concept improves the accuracy of optimization by the technical progress of multiple regression.

Full Aperture Black Body Design, Fabrication and Validation for Infrared Detector Calibration (적외선 검출기 검보정을 위한 대구경흑체 설계, 제작 및 검증)

  • Cho, Hyokjin;Seo, Hee-Jun;Kim, Keun-Shik;Park, Sung-Wook;Moon, Guee-Won
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.40-45
    • /
    • 2013
  • Satellite's infrared detector shall be calibrated under thermal vacuum environment using a reference black body before a launch. The full aperture black body (FABB) as an infrared calibration reference shall be composed of vacuum compatible materials and temperature controlled from $-40^{\circ}C$ to $+40^{\circ}C$ with emissivity higher than 0.95. The temperature homogeneity over the central 80 % area of the FABB front surface shall be better than 2 K. The FABB designed by thermal and flow analysis was $1m{\times}1m{\times}8mm$ copper plate on which black painted aluminum honeycomb core was attached. Copper tubes were welded on the opposite side of the honeycomb core to allow temperature regulated gaseous nitrogen to flow through them. By the FABB validation test, the temperature homogeneity was observed around 1 K using 20 PT100 sensors and modified COTS infrared camera. The emissivity value was 0.975 at $40^{\circ}C$ under atmospheric pressure.

Space Business and Applications of Vacuum Technology (우주개발과 진공기술의 응용)

  • Lee, Sang-Hoon;Seo, Hee-Jun;Yoo, Seong-Yeon
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.270-277
    • /
    • 2008
  • Vacuum is any air or gas pressure less than a prevailing pressure in an environmental or, specifically, any pressure lower than the atmospheric pressure and is used by a wide variety of scientists and engineering - including clean environment, thermal insulation, very long mean free path, plasma, space simulation[1]. The space environment is characterized by such a severe condition as high vacuum, and very low and high temperature. Since a satellite will be exposed to such a space environment as soon as it goes into its orbit, space environmental test should be carried out to verify the performance of the satellite on the ground under the space environmental conditions. A general and widely used method to simulate the space environment is using a thermal vacuum chamber which consists of vacuum vessel and thermally controlled shroud. As indicated by name of vacuum chamber, the vacuum technology is applied to design and manufacture of the thermal vacuum chamber. This paper describe the vacuum technology which is applied to space business.

Military Telescope Mirror Aluminum Re-Coating Prediction Study by Simulation (시뮬레이션을 통한 군용 망원경 미러 알루미늄 코팅 주기 예측 연구)

  • Choi, Hyo-Jun;Park, Jun-Su;Lee, Jung-Hoon;Oh, Young-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.439-447
    • /
    • 2020
  • Re-coating of the mirror is one of the important things to maintain the performance of a telescope. The metal coated on the mirror reflects light, and if the reflectance decreases, then the telescope's performance decreases, so the mirror must be periodically recoated. It is important to predict re-coating cycles for military telescopes and to develop maintenance plans not only for performance, but also for the telescope's availability for missions and the maintenance costs for long-term use. However, most similar telescopes used for astronomy research determine recoating cycles based on experience and operating conditions, and not for prediction of recoating. Therefore, this study predicts the cleaning cycles and re-coating cycles of a military telescope's mirror by using simulation. First, this study analyzed similar cases of domestic and foreign astronomy research institutes and the study also reviewed the need for re-coating and predicting re-coating cycles. Second, this study developed simulation for predicting cleaning and re-coating cycles according to data analysis and modeling. Finally, the study predicts cleaning cycles and re-coating cycles according to varying reflectance reduction (5%, 10%, 15%, 20%) and cleaning conditions (per 3 months, 6 months, 1 year and 2 years). As a result, this study suggests reference criteria to develop the planning for military telescopes and their maintenance.

Pin Distribute Method of Twist Cable at Military Unmanned Vehicle Wiring Unit Connector (군용 무인 이동체 배선장치 커넥터에서 트위스트 케이블 핀 배치 최적화 방안)

  • Eun, Hee-hyun;Roh, Dong-gyu;Kwak, Gyu-min;Kim, Jae-seung;Lee, Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.245-250
    • /
    • 2020
  • Currently, unmanned military vehicles under development in Korea have more devices to carry out various missions, and interface cables between them are also increasing. In addition, due to a small space problem inside the unmanned vehicle, devices are required to be miniaturized and integrated. For two reasons, connectors also need to be selected, which makes them vulnerable to noise due to the closer distance between the pins. In this paper, we analyzed how much the magnetic field produced by noise at the connector pin where cable twist is released affects the surrounding pin and presented the guide for optimal pin placement. First, the effect of magnetic field is greater than the crosstalk between pin and pin. Second, the magnetic field on both sides between + and - is strong when approaching one step with noise source. Third, the magnetic field strength is improved when setting the ground pin as the ground pin between the noise and the original signal when approaching the A noise source and the two steps. Fourth, in the case of a differential mode communication, the optimal placement area of the sensitive signal was presented according to positions Tx± and Rx±.

Development of Modeling and Simulation Tool for the Performance Analysis of Pods Mounted on Highly Maneuverable Aircraft (고기동 항공기 탑재 파드 성능 분석을 위한 모델링 및 시뮬레이션 도구 개발)

  • Lee, Sanghyun;Shin, Jinyoung;Lee, Jaein;Kim, Jongbum;Kim, Songhyon;Kim, Sitae;Cho, Donghyurn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.507-514
    • /
    • 2022
  • The EO/IR targeting pod mounted on a fighter to acquire information about tactical targets is typically mounted and operated at the bottom of the aircraft fuselage. Since the aircraft equipped with such an external attachment has complexed aerodynamic and inertial characteristics compared to the aircraft flying without an external attachment, a method of system performance analyses is required to identify development risk factors in the early stages of development and reflect them in the design. In this study, a development plan was presented to provide the necessary modeling and simulation tools to develop a pod that can acquire measurement data stably in a highly maneuverable environment. The limiting operating conditions of the pods mounted on the highly maneuverable aircraft were derived, the aerodynamics and inertial loads of the mounted pods were analyzed according to the limiting operating conditions, and a flight data generation and transmission system were developed by simulating the mission of the aircraft equipped with the mounted pods.

Experimental Performance Validation of an Unmanned Surface Vessel System for Wide-Area Sensing and Monitoring of Hazardous and Noxious Substances (HNS 광역 탐지 및 모니터링을 위한 부유식 무인이동체 시스템의 실험적 성능 검증)

  • Jinwook Park;Jinsik Kim;Jinwhan Kim;Yongmyung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.11-17
    • /
    • 2022
  • In this study, we address the development of a floating platform system based on a unmanned surface vessel for wide-area sensing and monitoring of hazardous and noxious substances (HNSs). For long endurance, a movable floating platform with no mooring lines was used and modified for HNS sensing and monitoring. The floating platform was equipped with various sensors such as optical and thermal imaging cameras, marine radar, and sensors for detecting HNSs in water and air. Additionally, for experiment validation in real outdoor environments, a portable gas-exposure system (PGS) was built and installed on the monitoring system. The software for carrying out the mission was integrated with the Robot Operating System (ROS) framework. The practical feasibility of the developed system was verified through experimental tests conducted in inland water and real-sea environments.

MDP(Markov Decision Process) Model for Prediction of Survivor Behavior based on Topographic Information (지형정보 기반 조난자 행동예측을 위한 마코프 의사결정과정 모형)

  • Jinho Son;Suhwan Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • In the wartime, aircraft carrying out a mission to strike the enemy deep in the depth are exposed to the risk of being shoot down. As a key combat force in mordern warfare, it takes a lot of time, effot and national budget to train military flight personnel who operate high-tech weapon systems. Therefore, this study studied the path problem of predicting the route of emergency escape from enemy territory to the target point to avoid obstacles, and through this, the possibility of safe recovery of emergency escape military flight personnel was increased. based problem, transforming the problem into a TSP, VRP, and Dijkstra algorithm, and approaching it with an optimization technique. However, if this problem is approached in a network problem, it is difficult to reflect the dynamic factors and uncertainties of the battlefield environment that military flight personnel in distress will face. So, MDP suitable for modeling dynamic environments was applied and studied. In addition, GIS was used to obtain topographic information data, and in the process of designing the reward structure of MDP, topographic information was reflected in more detail so that the model could be more realistic than previous studies. In this study, value iteration algorithms and deterministic methods were used to derive a path that allows the military flight personnel in distress to move to the shortest distance while making the most of the topographical advantages. In addition, it was intended to add the reality of the model by adding actual topographic information and obstacles that the military flight personnel in distress can meet in the process of escape and escape. Through this, it was possible to predict through which route the military flight personnel would escape and escape in the actual situation. The model presented in this study can be applied to various operational situations through redesign of the reward structure. In actual situations, decision support based on scientific techniques that reflect various factors in predicting the escape route of the military flight personnel in distress and conducting combat search and rescue operations will be possible.

The Government Organization Act and the Desirable Government Structure in the 21st Century (21세기 바람직한 정부조직과 정부조직법)

  • Sung, Nak-In
    • Journal of Legislation Research
    • /
    • no.44
    • /
    • pp.241-281
    • /
    • 2013
  • First and foremost, a discussion concerning government structure has to be done in connection with the state form and the governmental form. For practical reasons, there is a need to balance the principle of legality and its exceptions under the Government Organization Act. To ensure the flexibility of government structure with respect to the principle of legality, the National Assembly should accept the government structure requested by the newly elected government. This mitigates the rigidity of the principle of the legality within the government organizations. However, excessive changes by each government could violate the principle of legality asked by Constitution. In this sense, arbitrary modification with respect to the government structure by the newly elected government is not desirable. The long term stability of the government organization is required in any case. Secondly, general administrative agencies, other than Executive Ministries, should not be established under the direct order of the President without the control of the Prime Minister. A hierarchy of the executive branch (President->Prime Minister-> Executive Ministries) is stipulated in the Constitution. Establishing a hierarchy of President -> executive institution should be considered unconstitutional. Therefore, only the Presidential Secretariat and institutions with special functions can be established in the Presidential Office. Establishing general administrative agencies in the Presidential Office for convenience purposes is against the spirit of the current Constitution. Consequently, only the office of staffs and special agencies can be placed in the presidential office. It is against the spirit of the current Constitution to found administrative agencies under the presidential office for convenience. Thirdly, the office of the Prime Minister should be the backbone of internal affairs. In that sense, the President, as the head of state, should focus on the big picture such as the direction of the State, while the Cabinet headed by the Prime Minister should be responsible for the daily affairs of the State. The cabinet surrounding the Prime Minister must control all the ordinary affairs of the State, while the President, as the head of the State, should focus on the big picture of blueprinting the aim of the State. Lastly, the Office of the Prime Minister and Executive Ministries are the two main bodies of the executive branch. It is important to reduce the confusion caused by repeated changes in the names of Executive Ministries, to restore the traditional names and authorities of these institutions, and to rehabilitate the legitimacy of the State. For the Korean democracy to take its roots, a systematic way of stabilizing a law-governed democratic country is needed. There is also the need not only to reform security and economic agencies, but also to rationally solve the integration of technique and policy, according to the changes of time.