• Title/Summary/Keyword: 임계지수

Search Result 202, Processing Time 0.034 seconds

Wetness Index와 Profile Model을 이용한 암석의 화학적 풍화연구

  • 김성욱;한지영;윤운상;김상현;김인수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.272-276
    • /
    • 2004
  • 화강암에 대한 화학적 풍화특성과 풍화 정도의 정량적으로 표현하기 위한 방법으로 조사지역의 지형자료에 기초한 습윤지수(wetness indes)를 산정하였으며, 중화속도 및 등급을 산정하였다. 습윤지수는 지형 고도를 이용하여 2-5m 크기의 격자로 구성 된 수치고도모형을 작성하여 계산하였으며 풍화속도와 등급은 Profile model을 이용하였다. 연구대상지역은 마산지역과 서부산지역으로 집수지형을 지시하는 습윤지수의 분포는 마산지역에서 다소 높은 지수 값을 보인다. 임계부하량(critical loads)에 의한 풍화등급은 마산 가포동 지역과 서부산 견마도 지역은 각각 3등급과 4등급에 해당하여 견마도 일원에서 높은 풍화 정도를 지시한다. 이와 같은 결과는 동일한 화강암 분포지의 경우에도 구성 광물의 비율과 기온과 강수량과 같은 지역적인 특성에 따라 상이한 풍화 경향이 나타남을 지시한다.

  • PDF

Correlation Analysis of Inter-Relations among Water Quality, Landscape Metrics, Land Use, and Aquatic Ecosystem Health in the Nakdong River Basin (낙동강 유역의 수질, 경관지수, 토지이용 및 수생태계 건강성의 상관성 분석)

  • Gyobeom Kim;Kyuong-Ho Kim;Jongyoon Park
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.152-152
    • /
    • 2023
  • 하천의 건강성을 평가하기 위해 일반적으로 수생태계 건강성 지표(TDI, BMI, FAI, HRI, RVI)가 사용되고 있다. 이 지표는 5가지 등급으로 구분하여 매우 좋음(A), 좋음(B), 보통(C), 나쁨(D), 매우나쁨(E)으로 구분된다. 하지만, 하천의 건강성 관점에서 수질, 토지이용, 지리적 특성, 경관지수와의 상관성을 바탕으로 어떤 영향을 미치는지에 대한 연구가 필요하다. 본 연구에서는 하천의 수생태계 건강성에 영향을 미치는 환경적 인자들과의 관계성을 분석하여 수생태계 건강성이 '좋음'에 해당되는 하천으로 분류하고자 한다. 이를 통해 환경적 인자들의 임계값을 산출하여 하천 관리에 대한 구체적인 우선순위 설정 방안을 제안하고자 한다. 낙동강대권역을 대상으로 수질, 토지이용, 지리적 특성, 경관지수의 여러 변수 중 수생태계 건강성과의 관계에서 대표성을 나타낼 수 있는 환경적 인자를 선정하기 위하여 정준상관분석(CCA)을 수행하였다. 또한 모델 기반의 클러스터 분석을 활용하여 소권역별로 수생태계 건강성이 '좋음'에 해당할 확률을 파악하고, 여기에 해당하는 소권역에 대하여 각각의 환경적 인자에 대한 임계값을 정량적으로 평가하였다. 본 연구에서는 하천의 환경 인자들과의 관계를 분석하여 수생태계 건강성을 평가하고 하천 관리에 대한 구체적인 우선순위를 파악하는 방법을 제안한다. 주성분 분석 및 모델 기반 클러스터 분석을 사용하여 각 소권역에 대한 환경 인자의 임계값을 평가하고, 정책 결정자들이 하천의 건강성을 유지하고 개선할 수 있는 정보를 제공할 수 있다.

  • PDF

Selecting the optimal threshold based on impurity index in imbalanced classification (불균형 자료에서 불순도 지수를 활용한 분류 임계값 선택)

  • Jang, Shuin;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.711-721
    • /
    • 2021
  • In this paper, we propose the method of adjusting thresholds using impurity indices in classification analysis on imbalanced data. Suppose the minority category is Positive and the majority category is Negative for the imbalanced binomial data. When categories are determined based on the commonly used 0.5 basis, the specificity tends to be high in unbalanced data while the sensitivity is relatively low. Increasing sensitivity is important when proper classification of objects in minority categories is relatively important. We explore how to increase sensitivity through adjusting thresholds. Existing studies have adjusted thresholds based on measures such as G-Mean and F1-score, but in this paper, we propose a method to select optimal thresholds using the chi-square statistic of CHAID, the Gini index of CART, and the entropy of C4.5. We also introduce how to get a possible unique value when multiple optimal thresholds are obtained. Empirical analysis shows what improvements have been made compared to the results based on 0.5 through classification performance metrics.

A study of applying soil moisture for improving false alarm rates in monitoring landslides (산사태 모니터링 오탐지율 개선을 위한 토양수분자료 활용에 관한 연구)

  • Oh, Seungcheol;Jeong, Jaehwan;Choi, Minha;Yoon, Hongsik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1205-1214
    • /
    • 2021
  • Precipitation is one of a major causes of landslides by rising of pore water pressure, which leads to fluctuations of soil strength and stress. For this reason, precipitation is the most frequently used to determine the landslide thresholds. However, using only precipitation has limitations in predicting and estimating slope stability quantitatively for reducing false alarm events. On the other hand, Soil Moisture (SM) has been used for calculating slope stability in many studies since it is directly related to pore water pressure than precipitation. Therefore, this study attempted to evaluate the appropriateness of applying soil moisture in determining the landslide threshold. First, the reactivity of soil saturation level to precipitation was identified through time-series analysis. The precipitation threshold was calculated using daily precipitation (Pdaily) and the Antecedent Precipitation Index (API), and the hydrological threshold was calculated using daily precipitation and soil saturation level. Using a contingency table, these two thresholds were assessed qualitatively. In results, compared to Pdaily only threshold, Goesan showed an improvement of 75% (Pdaily + API) and 42% (Pdaily + SM) and Changsu showed an improvement of 33% (Pdaily + API) and 44% (Pdaily + SM), respectively. Both API and SM effectively enhanced the Critical Success Index (CSI) and reduced the False Alarm Rate (FAR). In the future, studies such as calculating rainfall intensity required to cause/trigger landslides through soil saturation level or estimating rainfall resistance according to the soil saturation level are expected to contribute to improving landslide prediction accuracy.

A Study on the Evaluation of the Different Thresholds for Detecting Urban Areas Using Remote-Sensing Index Images: A Case Study for Daegu, South Korea (원격탐사 지수 영상으로부터 도시 지역 탐지를 위한 임계점 평가에 관한 연구: 대구광역시를 사례로)

  • CHOUNG, Yun-Jae;LEE, Eung-Joon;JO, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.129-139
    • /
    • 2019
  • Mapping urban areas using the earth observation satellites is useful for monitoring urban expansions and measuring urban developments. In this research, the different thresholds for detecting the urban areas separately from the remote-sensing index images (normalized-difference built-up index(NDBI) and urban index(UI) images) generated from the Landsat-8 image acquired in Daegu, South Korea were evaluated through the following steps: (1) the NDBI and UI images were separately generated from the given Landsat-8 image; (2) the different thresholds (-0.4, -0.2, and 0) for detecting the urban areas separately from the NDBI and UI images were evaluated; and (3) the accuracy of each detected urban area was assessed. The experiment results showed that the threshold -0.2 had the best performance for detecting the urban areas from the NDBI image, while the threshold -0.4 had the best performance for detecting the urban areas from the UI image. Some misclassification errors, however, occurred in the areas where the bare soil areas were classified into urban areas or where the high-rise apartments were classified into other areas. In the future research, a robust methodology for detecting urban areas, including the various types of urban features, with less misclassification errors will be proposed using the satellite images. In addition, research on analyzing the pattern of urban expansion will be carried out using the urban areas detected from the multi-temporal satellite images.

A thermoelastic simulation on the (100) Si-wafer ((100) 실리콘 웨이퍼에 대한 열탄성모사)

  • Doo Jin Choi;Hyun Jung Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.71-75
    • /
    • 1994
  • In this study, a thermoelastic stress index of (100) oriented single crystalline silicon wafer and a relationship between thermal stress and critical plastic deformation temperatures were simulated. The simulated results for the thermoelastic stress index indicated a maximum value on <110> direction and a minimum on <100>. Then, it could be predicted that silicon wafer is plastically deformable over 1000 K, based on the relationship between the thermal stress derived from the thermoelastic stress index and the critical plastic deformation temperature.

  • PDF

The Impacts of Urbanization on Changes of Extreme Events of Air Temperature in South Korea (한국의 도시화에 의한 극한기온의 변화)

  • Lee, Seung-Ho;Heo, In-Hye
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.3
    • /
    • pp.257-276
    • /
    • 2011
  • This study aimed to analyze the changes of extreme temperature indices in order to investigate impacts of urbanization on changes of extreme temperature. It was analyzed 16 indices related to extreme temperature indices to 60 weather stations in South Korea. Extreme temperature indices-related summer mostly increased, and its related to winter decreased. Percentile-based indices were clearly increased more than fixed-based indices as a tropical night. Decreasing trend of extreme temperature indices related to winter had more clear than increasing trend of extreme temperature indices related to summer. It was similar to trend that urban temperature was more clearly increased in winter than summer. Decreasing trend of indices-related daily minimum temperature had more clear than increasing trend of indices-related daily maximum temperature. Also, it was similar to increasing trend of minimum temperature had more clear than maximum temperature.

Threshold estimation for the composite lognormal-GPD models (로그-정규분포와 파레토 합성 분포의 임계점 추정)

  • Kim, Bobae;Noh, Jisuk;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.807-822
    • /
    • 2016
  • The composite lognormal-GPD models (LN-GPD) enjoys both merits from log-normality for the body of distribution and GPD for the thick tailedness of the observation. However, in the estimation perspective, LN-GPD model performs poorly due to numerical instability. Therefore, a two-stage procedure, that estimates threshold first then estimates other parameters later, is a natural method to consider. This paper considers five nonparametric threshold estimation methods widely used in extreme value theory and compares their performance in LN-GPD parameter estimation. A simulation study reveals that simultaneous maximum likelihood estimation performs good in threshold estimation, but very poor in tail index estimation. However, the nonparametric method performs good in tail index estimation, but introduced bias in threshold estimation. Our method is illustrated to the service time of an Israel bank call center and shows that the LN-GPD model fits better than LN or GPD model alone.

Evaluation of vegetation index accuracy based on drone optical sensor (드론 광학센서 기반의 식생지수 정확도 평가)

  • Lee, Geun Sang;Cho, Gi Sung;Hwang, Jee Wook;Kim, Pyoung Kwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.135-144
    • /
    • 2022
  • Since vegetation provides humans with various ecological spaces and is also very important in terms of water resources and climatic environment, many vegetation monitoring studies using vegetation indexes based on near infrared sensors have been conducted. Therefore, if the near infrared sensor is not provided, the vegetation monitoring study has a practical problem. In this study, to improve this problem, the NDVI (Normalized Difference Vegetation Index) was used as a reference to evaluate the accuracy of the vegetation index based on the optical sensor. First, the Kappa coefficient was calculated by overlapping the vegetation survey point surveyed in the field with the NDVI. As a result, the vegetation area with a threshold value of 0.6 or higher, which has the highest Kappa coefficient of 0.930, was evaluated based on optical sensor based vegetation index accuracy. It could be selected as standard data. As a result of selecting NDVI as reference data and comparing with vegetation index based on optical sensor, the Kappa coefficients at the threshold values of 0.04, 0.08, and 0.30 or higher were the highest, 0.713, 0.713, and 0.828, respectively. In particular, in the case of the RGBVI (Red Green Red Vegetation Index), the Kappa coefficient was high at 0.828. Therefore, it was found that the vegetation monitoring study using the optical sensor is possible even in environments where the near infrared sensor is not available.

Dielectric Constant Anomaly near the Consolute Point of a binary Mixture of MEEP and water (상전이 온도 근처에서 관찰되는 MEEP-물로 구성된 두 종류 섞임체의 유전상수 비정상성)

  • Cho, Chang-Ho;Seo, Young-Seok;Kim, Sei-Chang;Kim, Young-Baek
    • The Journal of Natural Sciences
    • /
    • v.8 no.1
    • /
    • pp.17-22
    • /
    • 1995
  • Dielectric constant was measured near the consolute point of a binary mixture of water and Poly[bis(methoxyethoxyethoxy)phosphazene], MEEP. Dielectric constant changed incontinously at phase separation temperature plotted against the concentration to abtain coexistence curve. The critical temperatures and the critical concentration were $71^{\circ}C$, 5.5% as determined from the coexistence curve, respectivley. The critical exponent of dielectric constant, $\theta$, was 0.85. The dependence of dielectric constant on frequency is discussed in this report.

  • PDF