• Title/Summary/Keyword: 일축 압축강도

Search Result 613, Processing Time 0.018 seconds

Calculating the Uniaxial Compressive Strength of Granite from Gangwon Province using Linear Regression Analysis (선형회귀분석을 적용한 강원도 지역 화강암의 일축압축강도 산정)

  • Lee, Moon-Se;Kim, Man-Il;Baek, Jong-Nam;Han, Bong-Koo
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.361-367
    • /
    • 2011
  • The uniaxial compressive strength (UCS) is an important factor in the design and construction of surface and underground structures. However, the method employed to measure UCS is time consuming and expensive to apply in the field. Therefore, we developed a model to estimate UCS based on a few properties using linear regression analysis, which is a statistical method. To develop the model, valid factors from the test results were selected from a correlation analysis using a statistical program, and the model was formulated by linear regression based on the relationships among factors. UCS estimates derived from the model were compared with the results of UCS tests, to assess the reliability of the model. The relationship between rock properties and UCS indicates that the factors with the greatest influence on UCS are point load strength and shape facto r. The UCS values obtained using the model are in good agreement with the results of the UCS test. Therefore, the developed model may be used to estimate the UCS of rocks in regions with similar conditions to those of the present study area.

Unconfined Compression Strengh Characteristics and Degree of Disturbance of Busan Marine Clay (부산 해성 점토의 일축압축강도 특성 및 교란도에 관한 연구)

  • Kim, Byoung-Il;Lee, Seung-Won;Lee, Seung-Hyun;Cho, Sung-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.29-36
    • /
    • 2005
  • In this study, relations among unconfined compressive strength, strain at maximum strength and depth were compared with each other. Test specimen is marine clay originated from the place near Ga-duck island in Busan city. In addition, influence of impure material contained in specimen and that of total core recovery(TCR) on unconfined compressive strength and degree of disturbance were investigated. As a result of tests, unconfined compressive strength decreases as strain corresponding to maximum strength increases. Also, the deeper the sampling depth and the bigger the TCR, the unconfined compressive strength increases. Especially, as the TCR increases, the unconfined compressive strength Increases and quality of specimen is enhanced.

Evaluation of Rock Uniaxial Compressive Strength Using Ultrasonic Velocity (초음파 속도를 이용한 암석의 일축압축강도 평가)

  • Baek, Seung-Cheol;Kim, Yong-Tae;Kim, Hong-Taek;Yoon, Jun-Sig;Lee, Yun-Gyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.2
    • /
    • pp.33-42
    • /
    • 2006
  • Eighteen biotite granites on Andong area and twenty seven igneous rocks(diorite, granite, andesite, rhyolite) on Yeosu area were tested to evaluate the correlations between the uniaxial compressive strength values, as determined by the standard uniaxial compression test, and the corresponding results of the ultrasonic velocity. The variability of test results for each test was evaluated by calculating the coefficient of determination or variation. Results indicate that strong correlations exist between the results of uniaxial compression vs the point load, Schmidt hammer and ultrasonic velocity test. The correlation equations for predicting compressive strength using different methods are presented along with their confidence limits. Ultrasonic velocity test used provide reliable estimates of compressive strength.

  • PDF

Estimation for the Uniaxial Compressive Strength of Rocks in Korea using the Point Load Test (점하중시험을 이용한 국내 암석의 일축압축강도산정 연구)

  • Kim, Hak Joon
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.72-96
    • /
    • 2018
  • Accurate estimation of the uniaxial compressive strength of rock is very crucial for the safety of construction activities occurring in the rock mass. However, the uniaxial compressive strength test is expensive and time consuming. Moreover, the uniaxial compressive strength test cannot be performed in the field. In order to solve this kind of problem, many foreign researchers investigated the use of the point load strength test for the estimation of uniaxial compressive strength of rock. However, the result of research obtained for rocks from other countries may not be directly applicable for rocks in Korea. The correlation between the point load strength index and the uniaxial compressive strength for rocks in Korea is suggested in the form of table by using the results of the extensive literature reviews and laboratory tests. The suggested result is expected to be used for the simple and quick estimation of uniaxial compressive strength of rocks in Korea.

Unconfined Compressive Strength of Soil-Cement Pavement with Recycled Red Mud (레드머드가 첨가된 흙-시멘트 포장의 일축압축강도)

  • Lee, Yunkyu;Baek, Seungcheol;Holtz, R.D.;Jeong, Dongyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.37-43
    • /
    • 2008
  • The unconfined compressive strength of soil-cement mixed with red mud, an industrial by-product of alumina production, was investigated in the laboratory. The investigation involved laboratory tests under the various conditions such as red mud content, cement content, fly ash content and ratio of soil replacement with sands. The unconfined compressive strength tests were performed at 7, 14 and 21 days after specimen preparation. Results of the study show that the unconfined compressive strength increased as red mud and fly ash content decreased and cement content increased. Increasing the soil replacement ratio with sands had an insignificant effect on compressive strength because the soil had a similar particle size as the replacement sands.

  • PDF

Predicting the Uniaxial Compressive Strength and Young's Modulus of Rocks using Ultrasonic Velocity (초음파속도를 이용한 암석의 일축압축강도와 탄성계수 예측)

  • Choi, Gilhyun;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.53-58
    • /
    • 2014
  • The uniaxial compressive strength and Young's modulus of intact rocks are the most important analytical parameters for design of rock mass structures. But the preparation of the samples for uniaxial compressive test is a hard and time consuming task. By using ultrasonic test, engineers can predict the analytical parameters that is the uniaxial compressive strength and Young's modulus. The uniaxial compressive test and ultrasonic test were carried out 115 samples of igneous rocks, 74 samples of metamorphic rocks and 55 samples of sedimentary rocks and, after regression analysis of the test results, best fit equations for predicting the uniaxial compressive strength and Young's modulus are proposed. In order to obtain a better correlations coefficient between uniaxial compressive strength and P-wave velocity, the P-wave velocity were multiplied by density values. The proposed equations for predicting uniaxial compressive strength and Young's modulus using ultrasonic test provide reliable results.

Estimation of Unconfined Compressive Strength (UCS) of Microfine Cement Grouted Sand (마이크로 시멘트로 그라우팅 된 모래의 일축압축강도 예측)

  • Nam, Hongyeop;Lee, Woojin;Lee, Changho;Choo, Hyunwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.5-15
    • /
    • 2018
  • The unconfined compressive strength (UCS) test through coring is widely used to determine the reinforcement effect of the ground with grouting. However, the UCS test through coring can disturb the ground, is expensive and takes a lot of time to prepare the specimen. In this study, the factors affecting UCS of microfine cement grouted sand are evaluated and an empirical equation of UCS of microfine grouted sand is suggested. It is observed that UCS increases linearly until 28 days, however, the increasing rate of strength decreases sharply after that 28 days. The W/C ratio is dominant factor influencing UCS and UCS increases exponentially with the decrease of water/cement (W/C) ratio. Also, UCS increases linearly with increasing the relative density ranging from 30% to 70% and with decreasing median particle size. However, in case of W/C ratio=1 and K6 ($D_{50}=0.47mm$), UCS is lower than that of K4 ($D_{50}=1.08mm$) and K5 ($D_{50}=0.80mm$) due to filtration effect. Based on the experimental results, the empirical equation of UCS of microfine cement grouted sand can be expressed as the function of median particle size ($D_{50}$), porosity (n) and W/C ratio.

Analysis of Influence factors to Compressive and Tensile Strength of Basalt in Cheju Island (제주도 현무암의 압축 및 인장강도에 대한 영향요인 분석)

  • Nam, Jung-Man;Yun, Jung-Mann;Song, Young-Suk;Kim, Jun-Ho
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.215-225
    • /
    • 2008
  • In order to investigate the influence factors to compressive and tensile strength of basalt in Cheju Island, rock samples of Pyosenri basalt, trachy-basalt and scoria were taken from Seoguipo-Si Seongsan-Eup area, and a series of uniaxial compressive strength test and Brazilian test were carried out. Especially, these tests were performed in consideration of the loading speed, the moisture content in rock sample, and the anisotropy of rock strength. The uniaxial compressive strength was increased gradually as the loading speed rose. The increasing quantity of uniaxial compressive strength had a difference in each rock types. Also, the strength was decreased with increasing the moisture contents in rock sample by pore water. As the result of test considering the anisotropy of rock strength, the compressive strength in condition of failure occurred parallel to stratified layer is decreased about 12-26% more than that in condition of failure occurred inclined to stratified layer.

Unconfined Compressive Strength Characteristics of Eco-Friendly Stabilizers and Carbon Fiber Reinforced Soil (친환경고화재와 탄소섬유 보강토의 일축압축강도 특성)

  • Sewook Oh;Sunghwan Yang;Hongseok Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.8
    • /
    • pp.13-19
    • /
    • 2024
  • In this study, to reinforce the surface layer of weathered soil slopes where erosion and collapse of surface layer occur, compression strength tests were conducted by mixing carbon fiber and eco-friendly stabilizer (E.S.B.) To determine the optimal mixing ratio of E.S.B. and carbon fiber, E.S.B. was set at conditions of 10%, 20%, and 30%, and carbon fiber at 0.3%, 0.6%, 0.9%, and 1.2%. Additionally, to analyze the changes in compressive strength according to dry density and curing period, 85% and 95% of the maximum dry unit weight were applied, and curing periods were set to 3 days, 7 days, and 28 days. The standard strength for surface layer reinforcement of slopes is proposed as 4 MPa at 7 days and 6 MPa at 28 days according to ACI 230.1R-09 (2009). The compression test results showed that the unconfined compressive strength of E.S.B. reinforced soil met the standard strength at an E.S.B. mixing ratio of 10% or more for 95% compaction. Moreover, when carbon fiber was mixed with E.S.B. reinforced soil, a ductile fracture pattern was observed after the yield point due to compressive strength, indicating that the mixture could compensate for post-yield failure. It was analyzed that the maximum strength is exhibited at a carbon fiber mixing ratio of 0.6%. The unconfined compressive strength of carbon fiber reinforced soil increases by approximately 54-70% compared to the condition without carbon fiber.

Unconfined Compressive Strength Characteristics of E.S.B. Mixed Soil Based on Soil Compactness and Curing Period (토양의 다짐도와 재령기간에 따른 E.S.B. 혼합토의 일축압축강도특성)

  • Oh, Sewook;Kim, Hongseok;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.47-55
    • /
    • 2019
  • This study aims to provide basic data for soil packaging differing in accordance with the strength characteristics of mixed soil, using E.S.B. (Eco Soil Binder), an eco-friendly hardening agent, based on the type of soil. The soil used in this study is weathered granite soil readily collected in and around Korea, and is classified into SW, SP and SC according to soil classification systems. The test piece for the unconfined compressive strength test has dimensions of 50 mm in diameter and 100 mm in height, with the mix ratio of E.S.B. proportional to the weight of mixed soil changed from 5% to 10%, 15%, 20%, 25%, and 30%, where compactness of 90% and 100% were applied according to each condition to analyze the unconfined compressive strength characteristics at material ages of 3, 7, and 28 days. Also, the ratio of soil packaging standard strength and unconfined compressive strength was calculated to determine the optimal E.S.B. mix ratio, whereby the field applicability of the unconfined compressive strength using the estimation equation of ACI209R was evaluated.