• Title/Summary/Keyword: 일체형 가로보

Search Result 3, Processing Time 0.02 seconds

A Study on Integrated Cross Beam Improvement of Through Railway Plate Girder Bridge Support (철도 하로판형교 지점부의 일체형 가로보 개선에 관한 연구)

  • Ha, Yun-Soo;Kim, Doo-Hwan;Song, Kwan-Kwon;Kim, Seong-Pil;Lee, Seong-Geun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.114-120
    • /
    • 2018
  • Recently, the plate girder bridge is offen designed a temporary bridge for underground roadway construction have not interrupt railroad operation. The integral support plate girder bridge which have longitudinal girder and cross-girder is improved workability and reduction cost and of construction time. The cross beam of the integral support plate girder bridge has a normal box shape to distribute load on the main girde to end both side girder. In this study, On the change to the web distance of the cross box shows characteristics of related to the stresses and displacements on the flange and web plate. Afterward, the various analysis contributed to the safety improvement of crossbeam of the integral support crossbeam plate girder bridge.

The Characteristics of Structural Behavior of Temporary Bridge Using Continuous Cross Beam (일체형 가로보를 이용한 임시교량의 구조적 거동특성)

  • Joo, Hyung-Joong;Lee, Young-Geun;Lee, Dong-Hyuk;Yoon, Soon-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.559-569
    • /
    • 2012
  • Cross-beam in the existing temporary bridge system is usually installed to prevent the lateral-torsional buckling of girders and to promote the construction efficiency. However, most of this cross-beams are connected to the girder web by bolts, and therefore, gravitational load resisting capacity of the cross-beams are negligibly small. In recent years, new temporary bridge system, in which the cross-beams and girders are connected to resist the external loads as a unit, was developed. In this paper, we present the experimental and analytical study results pertaining to the structural behavior and load carrying capacity of new temporary bridge system. From the results of study, it was found that the continuous cross-beam increased the flexural rigidity and reduced the maximum flexural stress in the girder. In addition, it was also found that the new temporary bridge system developed is more appropriate for the application in the long-span temporary bridge.

Study on the Ventilation System Applicability of High-rise Hog Building for Growing-fattening (고상식 육성비육돈사에 적합한 환기시스템에 관한 연구)

  • Yoo, Yong-Hee;Song, Jun-Ik;Choi, Dong-Yoon;Chung, Eui-Soo;Jeon, Kyoung-Ho;Lee, Poong-Yeon;Kim, Sang-Woo;Jeung, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.41-50
    • /
    • 2010
  • The goal of this study was to develop a suitable ventilation system for high-rise hog building (HRHB) for growing-fattening with combined slatted floor pen in second story and in situ manure management system in Korea. The HRHB was constructed as 29m long, 9m wide and 7.6m high for outer dimension with an indoor height of 3.1m and 2.4 for lower and upper floor, respectively. Ventilation systems for each treatment were installed in separated rooms of HRHB. The ventilation types installed in each room were following 3 types: ventilation type 1 (V1), where air was pulled through a circular duct inlet and exhausted by fans; ventilation type 2 (V2), where air was pulled through eave inlet (side ceiling inlet) and exhausted by fans; and ventilation type 3 (V3), where air was pulled through baffled ceiling inlet and exhausted by fans. For each ventilation system, investigated air velocity under minimum, medium and maximum ventilation ratio and air flow pattern inside. The results were as follows; For air flow pattern from top to bottom, V1 showed a homogeneous vertical type, V2 showed a bilateral symmetry type and V3 showed an vertical umbrella type. Under minimum ventilation ratio, air velocity in upper floor (80cm above the slated floor) was similar for V1, V2, and V3. Under maximum ventilation ratio, air velocity in upper floor was undeviating for V1 (0.10~0.26m/s) and varied for V2 (0.12~0.63m/s) while those for V3 was relatively slow and less varied (0.07~0.15m/s). In conclusion, Duct inlet type (V1) can be applied to the development of a new HRHB with additional evaluations such as field test hog feeding.