• Title/Summary/Keyword: 일조시수

Search Result 59, Processing Time 0.031 seconds

Evaluation of Vegetative Growth in a Mature Stand of Korean Pine under Simulated Climatic condition (복원된 국지기후에 근거한 잣나무 성숙임분의 영양생장에 미치는 국지기후의 영향)

  • 김일현;신만용;김영채;전상근
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.2
    • /
    • pp.105-113
    • /
    • 2001
  • This study was conducted to reveal the effects of local climatic conditions on the vegetative growth in a mature stand of Korean white pine based on climatic estimates. For this, the annual increments of stand variables such as DBH, height, basal area and volume were measured and estimated for seven years from 1974 to 1980. The local climatic conditions in the study site were also estimated by both a topoclimatological method and a spatial statistical technique. The local climatic conditions were then correlated with and regressed on the growth factors to reveal the relationships between the climatic estimates and the growth. It is found that relatively high temperatures had positive effects on the diameter growth. The yearly diameter growth increased when each of mean, maximum, and minimum temperature during the growing season was high. Height growth showed positively significant correlation with three climatic variables. The most important variable influencing height growth was the average of maximum temperature for 10 months from January to October. It means that the higher the average of maximum temperature for 10 months from January to October is, the more height growth of Korean white pine increases. Other climatic variables related to height growth were average of minimum temperature for 3 months in the early growing season and mean relative humidity for the growing season. Six climatic variables related to temperature had effects on basal area increment and all of them were positively correlated with basal area increment. Especially, temperatures from January to March were important factors affecting the basal area increment. In volume increment, high correlation was also recognized with most of temperature variables. This tendency was the same as the results in diameter and hight increments. This means that the volume growth increases when temperatures during the growing season are relatively high.

  • PDF

Effects of Local Climatic Conditions on the Early Growth in Korean White Pine (Pinus koraiensis Sieb. et Zucc.) Stands -Relation between Annual Increment and Local Climatic Conditions- (지역별 잣나무 초기생장에 미치는 미기후의 영향 - 연년생장과 미기후와의 관계-)

  • Chon Sang- Keun;Shin Man Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.1
    • /
    • pp.41-51
    • /
    • 1999
  • This study was conducted to investigate the effects of local climatic conditions on the annual increment of Korean white pine planted in Gapyung and Yaungdong. For this, stand variables such as mean DBH, mean height, basal area per hectare, and volume per hectare by stand age were measured and summarized for each locality. Based on these statistics, annual increments for 8 years from stand age 10 to 18 were calculated for each of stand variables. A topoclimatological technique which makes use of empirical relationships between the topography and the weather in study sites was applied to produce normal estimates of monthly mean, maximum, minimum temperatures, relative humidity, precipitation, and hours of sunshine. Then, the yearly climatic variables from 1990 to 1997 for each study site were derived from the spatial interpolation procedures based on inverse- distance weighting of the observed deviation from the climatic normals at the nearest 11 standard weather stations. From these estimates, 17 weather variables such as warmth index, coldness index, index of aridity etc., which affect the tree growth, were computed on yearly base for each locality. The deviations of measured annual increments from the expected annual increments for 8 years based on yield table of Korean white pine were then correlated with and regressed on the yearly weather variables to examine effects of local climatic conditions on the growth. Gapyung area provides better conditions for the growth of Korean white pine in the early stage than Youngdong area. This indicates that the conditions such as low temperature, high relative humidity, and large amount of precipitation provide favor environment for the early growth of Korean white pine. A ccording to the correlation and regression an analysis using local climatic conditions and annual increments, the growth pattern of Gapyung area corresponds to this tendency. However, it was found that the relationship between annual increments and local climatic conditions in Youngdong area shows different tendency from Gapyung. These results mean that the yearly growth pattern could not sufficiently be explained by climatic conditions with high variance in yearly weather variables. In addition, the poor growth in Youngdong area might not only be affected by climatic conditions, but also by other environmental factors such as site quality.

  • PDF

Characteristics of the Early Growth for Korean White Pine(Pinus koraiensis Sieb. et Zucc.) and Effects of Local Climatic Conditions on the Growth -Relation between Periodic Annual Increment and Local Climatic Conditions- (지역별(地域別) 잣나무의 초기생장(初期生長) 특성(特性)과 미기후(微氣候)의 영향(影響) - 정기평균생장량(定期平均生長量)과 미기후(微氣候)와의 관계(關係) -)

  • Chon, Sang-Keun;Shin, Man Yong;Chung, Dong-Jun;Jang, Yong-Seok;Kim, Myung-Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.1
    • /
    • pp.73-85
    • /
    • 1999
  • This study was conducted to reveal the characteristics of the early growth by locality for Korean white pine planted in Gapyung and Kwangju, Kyunggi-Do and Youngdong, Choongchungbuk-Do. The effects of local climatic conditions as one of environmental factors on the growth were also analyzed. For this, several stand variables such as number of trees survived, mean DBH, mean height, basal area per hectare, and volume per hectare by stand age were measured and summarized for each locality. Based on these statistics, periodic annual increments for 8 years from stand age 10 to 18 were calculated for each of stand variables. A topoclimatological technique, for the estimation of local climatic conditions, which makes use of empirical relationships between the topography and the weather in study areas was applied to produce reasonable estimates of monthly mean, maximum, minimum temperatures, relative humidity, precipitation, and hours of sunshine over remote land area where routine observations are rare. From these monthly estimates, 17 weather variables such as warmth index, coldness index, index of aridity etc. which affect the tree growth, were computed for each locality. The periodic annual increments were then correlated with and regressed on the weather variables to examine effects of local weather conditions on the growth. Gapyung area provided the best conditions for the growth of Korean white pine in the early stage and Kwangju area ranked second. On the other hand, the growth pattern in Youngdong ranked last overall as expected. It is also found that the local growth patterns of Korean white pine in juvenile stage were affected by typical weather conditions. The conditions such as low temperature, high relative humidity, and large amount of precipitation provide favorable environment for the growth of Korean white pine. Especially, the diameter growth, basal area growth, and volume growth are mainly influenced by the amount of precipitation. However, it is proved that the height growth is affected by both the precipitation and temperature.

  • PDF

Studies on the Epidemiology and Control of Bacterial Leaf Blight of Rice in Korea (한국에 있어서의 벼흰빛잎마름병의 발생생태와 방제에 관한 연구)

  • Lee Kyung-hee
    • Korean journal of applied entomology
    • /
    • v.14 no.3 s.24
    • /
    • pp.111-131
    • /
    • 1975
  • The study has been carried out to investigate the occurrence, damage, characteristics of the pathogen, environmental conditions affecting the disease outbreak, varietal resistance, forecasting, and chemical control of bacterial leaf blight of rice in Korea since 1964. Bacterial leaf blight of rice became a major disease in Korea since 1960. A correlation was found between the annual increase of epidemics and increase of cultivation area of susceptible varieties, Jinheung, Keumnampung etc. Areal damage within the country showed that the more was at southern province, Jeonnam, Gyeongnam and western coast, and at flooded rice paddy. Yield reduction directly related with the amount of infection on upper leaves at heading stage. Fifty per cent of reduction resulted when the lesion area was more than 60 per cent. Less than 20 per cent of lesion area, however, was not affected so much on yield loss One hundred and six isolates collected from all over the country were classified as 8 strains by using 4 different bacteriophages in 1973. It was, however, only two in 1965. There were some specificities on varietal distributions among the strains such as that the Jinheung attacked mainly by strain A, B, C and I, those attack Kimmaze were A, B, H and I. Most strains were found from Tongil except D and E, whereas Akibare was only variety that attacked by strain E. Low temperature, high humidity, heavy rainfall and insutficient daylight favored the disease epidemics. Especially, typhoon and flooding at heading stage were critical factors. The earlier transplanting the more disease was resulted, and more nitrogen fertilizer application accerelated the diseased development in general. The resistance to the disease varied by growing stage of the sane plants. All of recommended varieties in Korea were susceptible to the disease except Norm No. 6 and Sirogane which moderately resistant. The pathogen, Xanthomonas oryzae, was detectable from extract of healthy seedlings that were grown in the field with an heavy infection previous year. The more bacteriophage in irigation water resulted the more disease outbreak, and the existence of more than 50 bacteriophages in 1ml. of irrigation water were necessary to initiate the disease out break. The curves representing occurrence of bacteriophages and disease outbreak were similar with 15 days interval. The survey of bacteriophage occurrence can be utilized in forecasting of the disease two weeks ahead of disease outbreak. Three applications of chemicals, Phenazin and Sangkel, in weekly intervals at the early satage of out-break depressed the symptom development, and increased yield by 20per cent. Proper period for the chemical application was just before the number of bacteriophage reaches 50 in 1ml. of irrigation water.

  • PDF

Genotype $\times$ Environment Interaction of Rice Yield in Multi-location Trials (벼 재배 품종과 환경의 상호작용)

  • 양창인;양세준;정영평;최해춘;신영범
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.6
    • /
    • pp.453-458
    • /
    • 2001
  • The Rural Development Administration (RDA) of Korea now operates a system called Rice Variety Selection Tests (RVST), which are now being implemented in eight Agricultural Research and Extension Services located in eight province RVST's objective is to provide accurate yield estimates and to select well-adapted varieties to each province. Systematic evaluation of entries included in RVST is a highly important task to select the best-adapted varieties to specific location and to observe the performance of entries across a wide range of test sites within a region. The rice yield data in RVST for ordinary transplanting in Kangwon province during 1997-2000 were analyzed. The experiments were carried out in three replications of a random complete block design with eleven entries across five locations. Additive Main effects and Multiplicative Interaction (AMMI) model was employed to examine the interaction between genotype and environment (G$\times$E) in the biplot form. It was found that genotype variability was as high as 66%, followed by G$\times$E interaction variability, 21%, and variability by environment, 13%. G$\times$E interaction was partitioned into two significant (P<0.05) principal components. Pattern analysis was used for interpretation on G$\times$E interaction and adaptibility. Major determinants among the meteorological factors on G$\times$E matrix were canopy minimum temperature, minimum relative humidity, sunshine hours, precipitation and mean cloud amount. Odaebyeo, Obongbyeo and Jinbubyeo were relatively stable varieties in all the regions. Furthermore, the most adapted varieties in each region, in terms of productivity, were evaluated.

  • PDF

Effects of Atmospheric factors on Local Adaption Rearing Test Results of Superior Breeding Combination of Silkworms (기상요소가 누에 우량교배조 지역적응시험의 작황에 미치는 영향)

  • Sohn, Bong-Hee;Kang, Pil-Don;Ryu, Kang-Sun;Jung, I-Yeon;Kim, Yong-Soon;Kim, Kee-Young;Kim, Mi-Ja
    • Journal of Sericultural and Entomological Science
    • /
    • v.49 no.2
    • /
    • pp.51-55
    • /
    • 2007
  • Investigation of atmospheric data and rearing results was conducted to analyze the effects of atmospheric factors such as temperature and precipitation on silkworm in 8 rearing places in which local adaptation test was being conducted with different mulberry growth condition, soil and atmosphere during spring and autumn rearing season of 2006. The atmospheric characteristics of spring rearing time are as follows. The average temperatures of young silkworm, old silkworm, mounting were $17.7^{\circ}C$, $19.8^{\circ}C$, $21.5^{\circ}C$ respectively, and $1^{\circ}C$ higher than normal year. The precipitation of young silkworm, old silkworm, mounting were 15.1 mm, 6.9 mm, 7.0 mm, respectively, and 22.9 mm lower than normal year in old silkworm and mounting. The daylight hours in larval stage was 1.7 hour shorter than normal year, but no difference in mounting. Thus precipitation was lower and temperature was higher than normal year in 2006. The rearing results of 2006 were 1 kg lower than normal year in cocoon yields per 10,000 3 rd molted larvae, single cocoon weight and cocoon shell percentage were a little higher. The atmospheric characteristics of spring rearing season are as follows. The average temperatures of young silkworm, old silkworm, mounting were $25.1^{\circ}C$, $20.5^{\circ}C$ and $19.9^{\circ}C$ respectively, temperature in young silkworm was $1^{\circ}C$ higher than normal year, and temperature in old silkworm was $1.3^{\circ}C$ lower than normal year. The precipitation of young silkworm, old silkworm, mounting were 110.2 mm, 4.6 mm, 3.7 mm, respectively and there were little differences compared to normal year. The atmospheric condition of 2006 which was similar to normal year did not affect the autumn rearing results of 2006. Namely, the single cocoon weight and cocoon shell weight were not different from normal year, and the same was cocoon shell percentage.

Upper Boundary Line Analysis of Rice Yield Response to Meteorological Condition for Yield Prediction I. Boundary Line Analysis and Construction of Yield Prediction Model (최대경계선을 이용한 벼 수량의 기상반응분석과 수량 예측 I. 최대경계선 분석과 수량예측모형 구축)

  • 김창국;이변우;한원식
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.3
    • /
    • pp.241-247
    • /
    • 2001
  • Boundary line method was adopted to analyze the relationships between rice yield and meteorological conditions during rice growing period. Boundary lines of yield responses to mean temperature($T_a$) and sunshine hour( $S_{h}$) and diurnal temperature range($T_r$) were well-fitted to hyperbolic functions of f($T_a$) =$$\beta$_{0t}$(1-EXP(-$$\beta$_{1t}$ $\times$ ($T_a$) ) and f( $S_{h}$)=$$\beta$_{0t}$((1-EXP($$\beta$_{1t}$$\times$ $S_{h}$)), to quadratic function of f($T_r$) =$\beta$$_{0r}$(1-($T_r$ 1r)$^2$), respectively. to take into account to, the sterility caused by low temperature during reproductive stage, cooling degree days [$T_c$ =$\Sigma$(20-$T_a$] for 30 days before heading were calculated. Boundary lines of yield responses to $T_c$ were fitted well to exponential function of f($T_c$) )=$\beta$$_{0c}$exp(-$$\beta$_{1c}$$\times$$T_c$ ). Excluding the constants of $\beta$$_{0s}$ from the boundary line functions, formed are the relative function values in the range of 0 to 1. And these were used as yield indices of the meteorological elements which indicate the degree of influence on rice yield. Assuming that the meteorological elements act multiplicatively and independently from each other, meteorological yield index (MIY) was calculated by the geometric mean of indices for each meteorological elements. MIY in each growth period showed good linear relationship with rice yield. The MIY's during 31 to 45 days after transplanting(DAT) in vegetative stage, during 30 to 16 days before heading (DBH) in reproductive stage and during 20 days after heading (DAH) in ripening stage showed greater explainablity for yield variation in each growth stage. MIY for the whole growth period was calculated by the following three methods of geometric mean of the indices for vegetative stage (MIVG), reproductive stage (HIRG) and ripening stage (HIRS). MI $Y_{I}$ was calculated by the geometric mean of meteorological indices showing the highest determination coefficient n each growth stage of rice. That is, (equation omitted) was calculated by the geometric mean of all the MIY's for all the growth periods devided into 15 to 20 days intervals from transplanting to 40 DAH. MI $Y_{III}$ was calculated by the geometric mean of MIY's for 45 days of vegetative stage (MIV $G_{0-45}$ ), 30 days of reproductive stage (MIR $G_{30-0}$) and 40 days of ripening stage (MIR $S_{0-40}$). MI $Y_{I}$, MI $Y_{II}$ and MI $Y_{III}$ showed good linear relationships with grain yield, the coefficients of determination being 0.651, 0.670 and 0.613, respectively.and 0.613, respectively.

  • PDF

Drying of Rough Rice by Solar Collectors (태양(太陽) 열(熱 )집열기(集熱機)를 이용(利用)한 벼의 건조(乾燥)에 관(關)한 연구(硏究))

  • Chang, Kyu-Seob;Kim, Man-Soo;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.264-272
    • /
    • 1979
  • The flat-plate and tubular soar collectors were designed and constructed for drying the rough rice, and the performance of the collectors and drying effect were investigated when rough rice was packed in grain bin connected to collectors. Average-monthly radiation on a horizontal surface based on bright sunshine in Daejeon area during 1978 was the highest as $16,814\;KJ/m^2{\cdot}day$ in May and the lowest as $4,254\;KJ/m^2{\cdot}day$ in December, and significane was not recognized between the calculated and recorded values. The thermal effciency of collectors were increased as radiation increased during drying period and the average thermal effciency of flat-plate and tubular collectors in 11 to 12 o'clock a.m were 28.12 and 16.75%, respectively. The average inlet temperature of grain bin at 12 o'clock was shown as 20.02 at control 40.5 at grain bin connected to tubular collector and $55.1^{\circ}C$ at grain bin connected to flat-plate collector. In 25 cm rough rice depth in grain bin, tim taken for drying from initial moisture content at 27.4 to decrease upto 17.0% (14.5 % on wet basis) were 32 in control, 18 in grain bin connected to tubular collector and 11 hrs to flat-plate collector, and grain depth influenced drying rate remarkably. In the view point of drying characteristics, drying pattern showed initially falling-rate to constant-rate period finally.

  • PDF

Modeling of Estimating Soil Moisture, Evapotranspiration and Yield of Chinese Cabbages from Meteorological Data at Different Growth Stages (기상자료(氣象資料)에 의(依)한 배추 생육시기별(生育時期別) 토양수분(土壤水分), 증발산량(蒸發散量) 및 수량(收量)의 추정모형(推定模型))

  • Im, Jeong-Nam;Yoo, Soon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.386-408
    • /
    • 1988
  • A study was conducted to develop a model for estimating evapotranspiration and yield of Chinese cabbages from meteorological factors from 1981 to 1986 in Suweon, Korea. Lysimeters with water table maintained at 50cm depth were used to measure the potential evapotranspiration and the maximum evapotranspiration in situ. The actual evapotranspiration and the yield were measured in the field plots irrigated with different soil moisture regimes of -0.2, -0.5, and -1.0 bars, respectively. The soil water content throughout the profile was monitored by a neutron moisture depth gauge and the soil water potentials were measured using gypsum block and tensiometer. The fresh weight of Chinese cabbages at harvest was measured as yield. The data collected in situ were analyzed to obtain parameters related to modeling. The results were summarized as followings: 1. The 5-year mean of potential evapotranspiration (PET) gradually increased from 2.38 mm/day in early April to 3.98 mm/day in mid-June, and thereafter, decreased to 1.06 mm/day in mid-November. The estimated PET by Penman, Radiation or Blanney-Criddle methods were overestimated in comparison with the measured PET, while those by Pan-evaporation method were underestimated. The correlation between the estimated and the measured PET, however, showed high significance except for July and August by Blanney-Criddle method, which implied that the coefficients should be adjusted to the Korean conditions. 2. The meteorological factors which showed hgih correlation with the measured PET were temperature, vapour pressure deficit, sunshine hours, solar radiation and pan-evaporation. Several multiple regression equations using meteorological factors were formulated to estimate PET. The equation with pan-evaporation (Eo) was the simplest but highly accurate. PET = 0.712 + 0.705Eo 3. The crop coefficient of Chinese cabbages (Kc), the ratio of the maximum evapotranspiration (ETm) to PET, ranged from 0.5 to 0.7 at early growth stage and from 0.9 to 1.2 at mid and late growth stages. The regression equation with respect to the growth progress degree (G), ranging from 0.0 at transplanting day to 1.0 at the harvesting day, were: $$Kc=0.598+0.959G-0.501G^2$$ for spring cabbages $$Kc=0.402+1.887G-1.432G^2$$ for autumn cabbages 4. The soil factor (Kf), the ratio of the actual evapotranspiration to the maximum evapotranspiration, showed 1.0 when the available soil water fraction (f) was higher than a threshold value (fp) and decreased linearly with decreasing f below fp. The relationships were: Kf=1.0 for $$f{\geq}fp$$ Kf=a+bf for f$$I{\leq}Esm$$ Es = Esm for I > Esm 6. The model for estimating actual evapotranspiration (ETa) was based on the water balance neglecting capillary rise as: ETa=PET. Kc. Kf+Es 7. The model for estimating relative yield (Y/Ym) was selected among the regression equations with the measured ETa as: Y/Ym=a+bln(ETa) The coefficients and b were 0.07 and 0.73 for spring Chinese cabbages and 0.37 and 0.66 for autumn Chinese cabbages, respectively. 8. The estimated ETa and Y/Ym were compared with the measured values to verify the model established above. The estimated ETa showed disparities within 0.29mm/day for spring Chinese cabbages and 0.19mm/day for autumn Chinese cabbages. The average deviation of the estimated relative yield were 0.14 and 0.09, respectively. 9. The deviations between the estimated values by the model and the actual values obtained from three cropping field experiments after the completion of the model calibration were within reasonable confidence range. Therefore, this model was validated to be used in practical purpose.

  • PDF