• Title/Summary/Keyword: 일별 수요예측

Search Result 27, Processing Time 0.022 seconds

Daily Peak Load Forecasting for Electricity Demand by Time series Models (시계열 모형을 이용한 일별 최대 전력 수요 예측 연구)

  • Lee, Jeong-Soon;Sohn, H.G.;Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.349-360
    • /
    • 2013
  • Forecasting the daily peak load for electricity demand is an important issue for future power plants and power management. We first introduce several time series models to predict the peak load for electricity demand and then compare the performance of models under the RMSE(root mean squared error) and MAPE(mean absolute percentage error) criteria.

Forecasting daily peak load by time series model with temperature and special days effect (기온과 특수일 효과를 고려하여 시계열 모형을 활용한 일별 최대 전력 수요 예측 연구)

  • Lee, Jin Young;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.161-171
    • /
    • 2019
  • Varied methods have been researched continuously because the past as the daily maximum electricity demand expectation has been a crucial task in the nation's electrical supply and demand. Forecasting the daily peak electricity demand accurately can prepare the daily operating program about the generating unit, and contribute the reduction of the consumption of the unnecessary energy source through efficient operating facilities. This method also has the advantage that can prepare anticipatively in the reserve margin reduced problem due to the power consumption superabundant by heating and air conditioning that can estimate the daily peak load. This paper researched a model that can forecast the next day's daily peak load when considering the influence of temperature and weekday, weekend, and holidays in the Seasonal ARIMA, TBATS, Seasonal Reg-ARIMA, and NNETAR model. The results of the forecasting performance test on the model of this paper for a Seasonal Reg-ARIMA model and NNETAR model that can consider the day of the week, and temperature showed better forecasting performance than a model that cannot consider these factors. The forecasting performance of the NNETAR model that utilized the artificial neural network was most outstanding.

Forecasting the Daily Container Volumes Using Data Mining with CART Approach (Datamining 기법을 활용한 단기 항만 물동량 예측)

  • Ha, Jun-Su;Lim, Chae Hwan;Cho, Kwang-Hee;Ha, Hun-Koo
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.3
    • /
    • pp.1-17
    • /
    • 2021
  • Forecasting the daily volume of container is important in many aspects of port operation. In this article, we utilized a machine-learning algorithm based on decision tree to predict future container throughput of Busan port. Accurate volume forecasting improves operational efficiency and service levels by reducing costs and shipowner latency. We showed that our method is capable of accurately and reliably predicting container throughput in short-term(days). Forecasting accuracy was improved by more than 22% over time series methods(ARIMA). We also demonstrated that the current method is assumption-free and not prone to human bias. We expect that such method could be useful in a broad range of fields.

Database Design for the Power System Load Forecasting (전력계통 수요예측을 위한 데이터베이스 설계)

  • Park, Jeong-Do;Song, Kyung-Bin;Baek, Young-Shik
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.80-82
    • /
    • 2003
  • 전력계통의 수요예측은 수십 년간의 일별, 주별, 월별, 년도별 자료와 기타 수많은 계수들을 요구하므로 처리해야할 자료의 양이 방대하여, 수요예측에는 데이터베이스의 사용이 필수이다. 본 연구에서는 수요예측 및 이와 유사한 대규모 자료의 전산화에 적합한 데이터베이스 설계기법을 소개하고, 계산 수행 시 속도 및 운용의 효율성을 기하기 위한 방안을 소개한다. 또한 데이터베이스의 유지보수를 위한 기법과 각종 접근 방법의 예를 들었다.

  • PDF

Demand Forecast For Empty Containers Using MLP (MLP를 이용한 공컨테이너 수요예측)

  • DongYun Kim;SunHo Bang;Jiyoung Jang;KwangSup Shin
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.85-98
    • /
    • 2021
  • The pandemic of COVID-19 further promoted the imbalance in the volume of imports and exports among countries using containers, which worsened the shortage of empty containers. Since it is important to secure as many empty containers as the appropriate demand for stable and efficient port operation, measures to predict demand for empty containers using various techniques have been studied so far. However, it was based on long-term forecasts on a monthly or annual basis rather than demand forecasts that could be used directly by ports and shipping companies. In this study, a daily and weekly prediction method using an actual artificial neural network is presented. In details, the demand forecasting model has been developed using multi-layer perceptron and multiple linear regression model. In order to overcome the limitation from the lack of data, it was manipulated considering the business process between the loaded container and empty container, which the fully-loaded container is converted to the empty container. From the result of numerical experiment, it has been developed the practically applicable forecasting model, even though it could not show the perfect accuracy.

Daily Gas Demand Forecast Using Functional Principal Component Analysis (함수 주성분 분석을 이용한 일별 도시가스 수요 예측)

  • Choi, Yongok;Park, Haeseong
    • Environmental and Resource Economics Review
    • /
    • v.29 no.4
    • /
    • pp.419-442
    • /
    • 2020
  • The majority of the natural gas demand in South Korea is mainly determined by the heating demand. Accordingly, there is a distinct seasonality in which the gas demand increases in winter and decreases in summer. Moreover, the degree of sensitiveness to temperature on gas demand has changed over time. This study firstly introduces changing temperature response function (TRF) to capture effects of changing seasonality. The temperature effect (TE), estimated by integrating temperature response function with daily temperature density, represents for the amount of gas demand change due to variation of temperature distribution. Also, this study presents an innovative way in forecasting daily temperature density by employing functional principal component analysis based on daily max/min temperature forecasts for the five big cities in Korea. The forecast errors of the temperature density and gas demand are decreased by 50% and 80% respectively if we use the proposed forecasted density rather than the average daily temperature density.

Port Volume Anomaly Detection Using Confidence Interval Estimation Based on Time Series Analysis (시계열 분석 기반 신뢰구간 추정을 활용한 항만 물동량 이상감지 방안)

  • Ha, Jun-Su;Na, Joon-Ho;Cho, Kwang-Hee;Ha, Hun-Koo
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.179-196
    • /
    • 2021
  • Port congestion rate at Busan Port has increased for three years. Port congestion causes container reconditioning, which increases the dockyard labor's work intensity and ship owner's waiting time. If congestion is prolonged, it can cause a drop in port service levels. Therefore, this study proposed an anomaly detection method using ARIMA(Autoregressive Integrated Moving Average) model with the daily volume data from 2013 to 2020. Most of the research that predicts port volume is mainly focusing on long-term forecasting. Furthermore, studies suggesting methods to utilize demand forecasting in terms of port operations are hard to find. Therefore, this study proposes a way to use daily demand forecasting for port anomaly detection to solve the congestion problem at Busan port.

Electricity Demand Forecasting for Daily Peak Load with Seasonality and Temperature Effects (계절성과 온도를 고려한 일별 최대 전력 수요 예측 연구)

  • Jung, Sang-Wook;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.5
    • /
    • pp.843-853
    • /
    • 2014
  • Accurate electricity demand forecasting for daily peak load is essential for management and planning at electrical facilities. In this paper, we rst, introduce the several time series models that forecast daily peak load and compare the forecasting performance of the models based on Mean Absolute Percentage Error(MAPE). The results show that the Reg-AR-GARCH model outperforms other competing models that consider Cooling Degree Day(CDD) and Heating Degree Day(HDD) as well as seasonal components.

Deep Neural Network Model For Short-term Electric Peak Load Forecasting (단기 전력 부하 첨두치 예측을 위한 심층 신경회로망 모델)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.1-6
    • /
    • 2018
  • In smart grid an accurate load forecasting is crucial in planning resources, which aids in improving its operation efficiency and reducing the dynamic uncertainties of energy systems. Research in this area has included the use of shallow neural networks and other machine learning techniques to solve this problem. Recent researches in the field of computer vision and speech recognition, have shown great promise for Deep Neural Networks (DNN). To improve the performance of daily electric peak load forecasting the paper presents a new deep neural network model which has the architecture of two multi-layer neural networks being serially connected. The proposed network model is progressively pre-learned layer by layer ahead of learning the whole network. For both one day and two day ahead peak load forecasting the proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange (KPX).

Functional clustering for electricity demand data: A case study (시간단위 전력수요자료의 함수적 군집분석: 사례연구)

  • Yoon, Sanghoo;Choi, Youngjean
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.4
    • /
    • pp.885-894
    • /
    • 2015
  • It is necessary to forecast the electricity demand for reliable and effective operation of the power system. In this study, we try to categorize a functional data, the mean curve in accordance with the time of daily power demand pattern. The data were collected between January 1, 2009 and December 31, 2011. And it were converted to time series data consisting of seasonal components and error component through log transformation and removing trend. Functional clustering by Ma et al. (2006) are applied and parameters are estimated using EM algorithm and generalized cross validation. The number of clusters is determined by classifying holidays or weekdays. Monday, weekday (Tuesday to Friday), Saturday, Sunday or holiday and season are described the mean curve of daily power demand pattern.