• Title/Summary/Keyword: 일별 가격 예측

Search Result 17, Processing Time 0.025 seconds

The Predictive Power of Implied Volatility of Portfolio Return in Korean Stock Market (한국주식시장 내재변동성의 포트폴리오 수익률 예측능력에 관한 연구)

  • Yoo, Shi-Yong;Kim, Doo-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5671-5676
    • /
    • 2011
  • Volatility Index is the index that represents future volatility of underlying asset implied in option price and expected value of market that measures the possibility of stock price's change expected by investors. The Korea Exchange announces a volatility Index, VKOSPI, since April, 13, 2009. This paper used daily data from January, 2002 through December, 2008 and tested power of Volatility index for future returns of portfolios sorted by size, book-to-market equity and beta. As a result, VKOSPI has the predictive power to future returns and then VKOSPI may be determinants of returns. Also if beta is included when sorting portfolio, the predictive power of VKOSPI is stronger for future portfolio returns.

Value-at-Risk Models in Crude Oil Markets (원유시장 분석을 위한 VaR 모형)

  • Kang, Sang Hoon;Yoon, Seong Min
    • Environmental and Resource Economics Review
    • /
    • v.16 no.4
    • /
    • pp.947-978
    • /
    • 2007
  • In this paper, we investigated a Value-at-Risk approach to the volatility of two crude oil markets (Brent and Dubai). We also assessed the performance of various VaR models (RiskMetrics, GARCH, IGARCH and FIGARCH models) with the normal and skewed Student-t distribution innovations. The FIGARCH model outperforms the GARCH and IGARCH models in capturing the long memory property in the volatility of crude oil markets returns. This implies that the long memory property is prevalent in the volatility of crude oil returns. In addition, from the results of VaR analysis, the FIGARCH model with the skewed Student-t distribution innovation predicts critical loss more accurately than other models with the normal distribution innovation for both long and short positions. This finding indicates that the skewed Student-t distribution innovation is better for modeling the skewness and excess kurtosis in the distribution of crude oil returns. Overall, these findings might improve the measurement of the dynamics of crude oil prices and provide an accurate estimation of VaR for buyers and sellers in crude oil markets.

  • PDF

Long Memory and Cointegration in Crude Oil Market Dynamics (국제원유시장의 동적 움직임에 내재하는 장기기억 특성과 공적분 관계 연구)

  • Kang, Sang Hoon;Yoon, Seong-Min
    • Environmental and Resource Economics Review
    • /
    • v.19 no.3
    • /
    • pp.485-508
    • /
    • 2010
  • This paper examines the long memory property and investigates cointegration in the dynamics of crude oil markets. For these purposes, we apply the joint ARMA-FIAPARCH model with structural break and the vector error correction model (VECM) to three daily crude oil prices: Brent, Dubai and West Texas Intermediate (WTI). In all crude oil markets, the property of long memory exists in their volatility, and the ARMA-FIAPARCH model adequately captures this long memory property. In addition, the results of the cointegration test and VECM estimation indicate a bi-directional relationship between returns and the conditional variance of crude oil prices. This finding implies that the dynamics of returns affect volatility, and vice versa. These findings can be utilized for improving the understanding of the dynamics of crude oil prices and forecasting market risk for buyers and sellers in crude oil markets.

  • PDF

Characteristic Analysis of Kospi Index Using Deep Learning (심층학습을 이용한 한국종합주가지수의 특성분석)

  • Snag-Il Han
    • Journal of Practical Engineering Education
    • /
    • v.16 no.1_spc
    • /
    • pp.51-58
    • /
    • 2024
  • This paper examines the differences between the Korean and American stock markets using the Kospi and S&P 500 indices and discusses policy implications through them. To this end, in addition to the existing time series analysis method, a deep learning method was used to compare markets, and the comparison was made in terms of stock price forecasting ability and data generation ability. In monthly data, the difference between time series was not large, and in daily data, the difference in terms of stability was weak, and there was no significant difference in predictive power or simulation data generation. As shown in the results of this study, if there is not much difference in market price movement patterns between Korea and the United States, tax benefits for long-term stocks investment will be effective against the side effects of short selling.

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems (지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구)

  • Kim, Sun-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.19-32
    • /
    • 2010
  • Volatility plays a central role in both academic and practical applications, especially in pricing financial derivative products and trading volatility strategies. This study presents a novel mechanism based on generalized autoregressive conditional heteroskedasticity (GARCH) models that is able to enhance the performance of intelligent volatility trading systems by predicting Korean stock market volatility more accurately. In particular, we embedded the concept of the volatility asymmetry documented widely in the literature into our model. The newly developed Korean stock market volatility index of KOSPI 200, VKOSPI, is used as a volatility proxy. It is the price of a linear portfolio of the KOSPI 200 index options and measures the effect of the expectations of dealers and option traders on stock market volatility for 30 calendar days. The KOSPI 200 index options market started in 1997 and has become the most actively traded market in the world. Its trading volume is more than 10 million contracts a day and records the highest of all the stock index option markets. Therefore, analyzing the VKOSPI has great importance in understanding volatility inherent in option prices and can afford some trading ideas for futures and option dealers. Use of the VKOSPI as volatility proxy avoids statistical estimation problems associated with other measures of volatility since the VKOSPI is model-free expected volatility of market participants calculated directly from the transacted option prices. This study estimates the symmetric and asymmetric GARCH models for the KOSPI 200 index from January 2003 to December 2006 by the maximum likelihood procedure. Asymmetric GARCH models include GJR-GARCH model of Glosten, Jagannathan and Runke, exponential GARCH model of Nelson and power autoregressive conditional heteroskedasticity (ARCH) of Ding, Granger and Engle. Symmetric GARCH model indicates basic GARCH (1, 1). Tomorrow's forecasted value and change direction of stock market volatility are obtained by recursive GARCH specifications from January 2007 to December 2009 and are compared with the VKOSPI. Empirical results indicate that negative unanticipated returns increase volatility more than positive return shocks of equal magnitude decrease volatility, indicating the existence of volatility asymmetry in the Korean stock market. The point value and change direction of tomorrow VKOSPI are estimated and forecasted by GARCH models. Volatility trading system is developed using the forecasted change direction of the VKOSPI, that is, if tomorrow VKOSPI is expected to rise, a long straddle or strangle position is established. A short straddle or strangle position is taken if VKOSPI is expected to fall tomorrow. Total profit is calculated as the cumulative sum of the VKOSPI percentage change. If forecasted direction is correct, the absolute value of the VKOSPI percentage changes is added to trading profit. It is subtracted from the trading profit if forecasted direction is not correct. For the in-sample period, the power ARCH model best fits in a statistical metric, Mean Squared Prediction Error (MSPE), and the exponential GARCH model shows the highest Mean Correct Prediction (MCP). The power ARCH model best fits also for the out-of-sample period and provides the highest probability for the VKOSPI change direction tomorrow. Generally, the power ARCH model shows the best fit for the VKOSPI. All the GARCH models provide trading profits for volatility trading system and the exponential GARCH model shows the best performance, annual profit of 197.56%, during the in-sample period. The GARCH models present trading profits during the out-of-sample period except for the exponential GARCH model. During the out-of-sample period, the power ARCH model shows the largest annual trading profit of 38%. The volatility clustering and asymmetry found in this research are the reflection of volatility non-linearity. This further suggests that combining the asymmetric GARCH models and artificial neural networks can significantly enhance the performance of the suggested volatility trading system, since artificial neural networks have been shown to effectively model nonlinear relationships.

Technical Trading Rules for Bitcoin Futures (비트코인 선물의 기술적 거래 규칙)

  • Kim, Sun Woong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.94-103
    • /
    • 2021
  • This study aims to propose technical trading rules for Bitcoin futures and empirically analyze investment performance. Investment strategies include standard trading rules such as VMA, TRB, FR, MACD, RSI, BB, using Bitcoin futures daily data from December 18, 2017 to March 31, 2021. The trend-following rules showed higher investment performance than the comparative strategy B&H. Compared to KOSPI200 index futures, Bitcoin futures investment performance was higher. In particular, the investment performance has increased significantly in Sortino Ratio, which reflects downside risk. This study can find academic significance in that it is the first attempt to systematically analyze the investment performance of standard technical trading rules of Bitcoin futures. In future research, it is necessary to improve investment performance through the use of deep learning models or machine learning models to predict the price of Bitcoin futures.