• Title/Summary/Keyword: 일반 건축물

Search Result 419, Processing Time 0.026 seconds

Nonlinear Finite Element Analysis of Reinforced Concrete Columns with Steel Clip-Type Implements Subjected to Cyclic Lateral Loading (반복 횡하중이 작용하는 강재 클립형 연결장치로 결속된 철근 콘크리트 기둥의 비선형 유한요소해석)

  • Yong Joo Kim;Byong Jeong Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.243-250
    • /
    • 2023
  • Both ends of the hoop reinforcement in the reinforced concrete (RC) columns subjected to lateral loading must necessarily be bent by 135° so as to ensure a sufficient level of ductility. However, as this reinforcement is extremely difficult to construct, this requirement is often not satisfied at construction sites. This study entailed an experimental investigation on RC columns subjected to cyclic lateral loading equipped with steel clip-type implements that were developed to replace the complicated 135° hoop reinforcement details. Four RC column specimens were manufactured, and the main test parameters included the use of high-strength concrete and steel clip-type implements. Furthermore, three-dimensional finite element models were employed to evaluate the structural performances of the test specimens via nonlinear analyses. The results of the test and finite element analyses indicate that the RC columns with the steel clip-type implements exhibit structural performances equal to or better than those with the 135° hoop reinforcement details. Further, the finite element analysis results agree well with the test results.

Inelastic Nonlinear Analysis of Arch Truss and Space Truss Structures (아치 트러스 및 공간 트러스 구조의 비탄성 비선형 거동해석)

  • Kim, Kwang-Joong;Jung, Mi-Roo;Kim, Yeon-Tae;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.47-58
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane force by reducing the influence of bending moment, and it maximizes the effectiveness of structural system. With this character of the spatial structure, generally long span is used. As a result, large deflection is accompanied from the general frame. the structure is apt to result in a large deflection even though this structure experiences a small displacement in absence. Usually, nonlinear analysis in numerical analysis means geometric nonlinearity and material nonlinearity and complex nonlinearity analysis considers both of them. In this study, nonlinear equation of equilibrium considering geometric nonlinearity as per finite element method was applied and also considered the material nonlinearity using the relation of stress-strain in element. It is applied to find unstable result for tracing load-deflection curve in the numerical analysis tech. especially Arc-length method, and result of the analysis was studied by ABAQUS a general purpose of the finite element program. It is found that the present analysis predicts accurate nonlinear behavior of plane and space truss.

  • PDF

Collapse Capacity Evaluation of Steel Intermediate Moment Frames Using Incremental Dynamic Analysis (비선형 증분동적해석을 통한 철골 중간모멘트 골조의 붕괴성능 평가)

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.9-20
    • /
    • 2014
  • Steel intermediate moment frames (IMFs) have been generally used as seismic load resisting systems (SLRSs) of a building to provide resistances against strong ground shaking. However, most of low and mid-rise steel buildings in Korea were constructed during pre-seismic code era or before the introduction of well-organized current seismic codes. It has been recognized that the seismic performance of these steel IMFs is still questionable. In order to respond to such a question, this study quantitatively investigates the seismic capacities of steel IMFs. Prototype models are built according to the number of stories, the levels of elastic seismic design base shear and the ductilities of structural components. Also, the other prototype models employing hysteretic energy dissipating devices (HEDDs) are considered. The collapse mechanism and the seismic performance of the prototype models are then described based on the results obtained from nonlinear-static and incremental-dynamic analyses. The seismic performance of the prototype models is assessed from collapse margin ratio (CMR) and collapse probability. From the assessment, the prototype model representing new steel IMFs has enough seismic capacities while, the prototype models representing existing steel IMFs provide higher collapse probabilities. From the analytic results of the prototype models retrofitted with HEDDs, the HEDDs enhance the seismic performance and collapse capacity of the existing steel IMFs. This is due to the energy dissipating capacity of the HEDDs and the redistribution of plastic hinges.

Effect of Void Formation on Strength of Cemented Material (고결 지반 내에 형성된 공극이 강도에 미치는 영향)

  • Park, Sung-Sik;Choi, Hyun-Seok;Kim, Chang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.109-117
    • /
    • 2010
  • Gas hydrate dissociation can generate large amounts of gas and water in gas hydrate bearing sediments, which may eventually escape from a soil skeleton and form voids within the sediments. The loss of fine particles between coarse particles or collapse of cementation due to water flow during heavy or continuous rainfall may form large voids within soil structure. In this study, the effect of void formation resulting from gas hydrate dissociation or loss of some particles within soil structure on the strength of soil is examined. Glass beads with uniform gradation were used to simulate a gas hydrate bearing or washable soil structure. Glass beads were mixed with 2% cement ratio and 7% water content and then compacted into a cylindrical sample with five equal layers. Empty capsules for medicine are used to mimic large voids, which are bigger than soil particle, and embedded into the middle of five equal layers. The number, direction, and length of capsules embedded into each layer vary. After two days curing, a series of unconfined compression tests is performed on the capsule-embedded cemented glass beads. Unconfined compressive strength of cemented glass beads with capsules depends on the volume, direction and length of capsules. The volume and cross section formed by voids are most important factors in strength. An unconfined compressive strength of a specimen with large voids decreases up to 35% of a specimen without void. The results of this study can be used to predict the strength degradation of gas hydrate bearing sediments in the long term after dissociation and loss of fine particles within soil structure.

An Experimental Study on the Pore Structure and Thermal Properties of Lightweight Foamed Concrete by Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 기포구조 및 열적특성에 관한 실험적 연구)

  • Kim, Jin-Man;Choi, Hun-Gug;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.63-73
    • /
    • 2009
  • Recently, the use of lightweight panels in building structures has been increasing. Of the various lightweight panel types, styrofoam sandwich panels are inexpensive and are excellent in terms of their insulation capacity and their constructability. However, sandwich panels that include organic material are quite vulnerable to fire, and thus can numerous casualties in the event of a fire due to the lack of time to vacate and their emission of poisonous gas. On the other hand, lightweight foamed concrete is excellent, both in terms of its insulation ability and its fire resistance, due to its Inner pores. The properties of lightweight concrete is influenced by foaming agent type. Accordingly, this study investigates the insulation properties by foaming agent type, to evaluate the possibility of using light-weight foamed concrete instead of styrene foam. Our research found thatnon-heating zone temperature of lightweight foamed concrete using AP (Aluminum Powder) and FP (animal protein foaming agent) are lower than that of light-weight foamed concrete using AES (alkyl ether lactic acid ester). Lightweight foamed concrete using AES and FP satisfied fire performance requirements of two hours at a foam ratio 50, 100. Lightweight foamed concrete using AP satisfied fire performance requirements of two hours at AP ratio 0.1, 0.15. The insulation properties were better in closed pore foamed concrete by made AP, FP than with open pore foamed concrete made using AES.

Shape Scheme and Size Discrete Optimum Design of Plane Steel Trusses Using Improved Genetic Algorithm (개선된 유전자 알고리즘을 이용한 평면 철골트러스의 형상계획 및 단면 이산화 최적설계)

  • Kim, Soo-Won;Yuh, Baeg-Youh;Park, Choon-Wok;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.89-97
    • /
    • 2004
  • The objective of this study is the development of a scheme and discrete optimum design algorithm, which is based on the genetic algorithm. The algorithm can perform both scheme and size optimum designs of plane trusses. The developed Scheme genetic algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of structures and the constraints are limits on loads and serviceability. The basic search method for the optimum design is the genetic algorithm. The algorithm is known to be very efficient for the discrete optimization. However, its application to the complicated structures has been limited because of the extreme time need for a number of structural analyses. This study solves the problem by introducing the size & scheme genetic algorithm operators into the genetic algorithm. The genetic process virtually takes no time. However, the evolutionary process requires a tremendous amount of time for a number of structural analyses. Therefore, the application of the genetic algorithm to the complicated structures is extremely difficult, if not impossible. The scheme genetic algorithm operators was introduced to overcome the problem and to complement the evolutionary process. It is very efficient in the approximate analyses and scheme and size optimization of plane trusses structures and considerably reduces structural analysis time. Scheme and size discrete optimum combined into the genetic algorithm is what makes the practical discrete optimum design of plane fusses structures possible. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying the algorithm to various optimum design examples: plane pratt, howe and warren truss.

  • PDF

A Study on the Application of RTLS Technology for the Automation of Spray-Applied Fire Resistive Covering Work (뿜칠내화피복 작업 자동화시스템을 위한 RTLS 기술 적용에 관한 연구)

  • Kim, Kyoon-Tai
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.79-86
    • /
    • 2009
  • In a steel structure, spray-applied fire resistive materials are crucial in preventing structural strength from being weakened in the event of a fire. The quality control of such materials, however, is difficult for manual workers, who can frequently be in short supply. These skilled workers are also very likely to be exposed to environmental hazards. Problems with construction work such as this, which are specifically the difficulty of achieving quality control and the dangerous nature of the work itself, can be solved to some degree by the introduction of automated equipment. It is, however, very difficult to automate the work process, from operation to the selection of a location for the equipment, as the environment of a construction site has not yet been structured to accommodate automation. This is a fundamental study on the possibility of the automation of spray-applied fire resistive coating work. In this study, the linkability of the cutting-edge RTLS to an automation system is reviewed, and a scenario for the automation of spray-applied fire resistive coating work and system composition is presented. The system suggested in this study is still in a conceptual stage, and as such, there are many restrictions still to be resolved. Despite this fact, automation is expected to have good effectiveness in terms of preventing fire from spreading by maintaining a certain level of strength at a high temperature when a fire occurs, as it maintains the thickness of the fire-resistive coating at a specified level, and secures the integrity of the coating with the steel structure, thereby enhancing the fire-resistive performance. It also expected that if future research is conducted in this area in relation to a cutting-edge monitoring TRS, such as the ubiquitous sensor network (USN) and/or building information model (BIM), it will contribute to raising the level of construction automation in Korea, reducing costs through the systematic and efficient management of construction resources, shortening construction periods, and implementing more precise construction

Study on Deriving the Items related to Investigation and Planning for the Comprehensive Maintenance Plan of Scenic Sites (명승 종합정비계획 수립을 위한 조사 및 계획 항목의 도출에 관한 연구)

  • Lee, Jae-Yong
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.3
    • /
    • pp.88-103
    • /
    • 2018
  • The purpose of this study was to excavate the items of the comprehensive maintenance plan for scenic sites considering sustainability and analyze the needs of them. In this sense, based on 35 reports of the comprehensive maintenance plan established between 2006, when scenic sites started to be designated, and 2017, the items used in 'investigation field' and 'planning field' were examined, and then a survey regarding the needs of the items was conducted using a "5-point Likert Scale", targeting officials at 60 local governments in the whole country. Of 60 local governments, opinions from 48 officials at 45 local governments were analyzed. In order to verify the consistency of their opinions, "Reliability Analysis" was conducted, and Cronbach's alpha coefficient was 0.968 and 0.970 for 'investigation field' and 'planning field', respectively, showing high reliability. As a result of the survey, most opinions generally expressed the needs of 6 items of 'investigation field' of the comprehensive maintenance plan. Especially, the needs to investigate 'historical environment', 'natural environment', 'humanistic environment', and 'landscape' turned out to be high. In addition, as for 'general environment' and 'users', the needs of specific items such as 'distribution of main cultural properties and historic sites' (4.04) and 'acceptance of opinions from local residents and interested parties' (4.15) were found to be high. Besides, the items of 'planning field' also turned out to be needed in general (4.0). Particularly, the needs of 'enhancement of designated value and status' (4.26) and 'the comprehensive maintenance plan for designated areas of cultural properties and historic and cultural environment preservation areas' (4.25) in 'historical environment', 'maintenance of historic buildings at scenic sites' (4.28) in 'humanistic environment', and 'landscape trail planning' (4.28) in 'landscape' were found to be high. In conclusion, the practical items related to investigation and planning of the comprehensive maintenance plan for scenic sites are expected to contribute to effective conservation and management of scenic sites in the future.

A Proposal on the Improvement of Obstacle Limitation Surface and Aeronautical Study Method (장애물 제한표면과 항공학적 검토방법의 제도 개선에 관한 제언)

  • Kim, Hui-Yang;Jeon, Jong-Jin;Yu, Gwang-Eui
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.34 no.1
    • /
    • pp.159-201
    • /
    • 2019
  • Along with Annex 14 Volume I establishment in 1951 and the set-up of restriction surface around the runway, aeronautical technique and navigation performance achieved dazzling growth, and the safety and precision of navigation greatly improved. However, restrictions on surrounding obstacles are still valid for safe operation of an aircraft. Standards and criteria for securing safety of aircraft operating around and on airport is stated in Annex 11 Air Traffic Services and Annex 14 Aerodrome etc. In particular, Annex 14 Volume I presents the criteria for limiting obstacles around an airport, such as natural obstacles such as trees, mountains and hills to prevent collisions between aircraft and ground obstacles, and artificial obstacles such as buildings and structures. On the other hand, Annex 14 Volume I, in the application of the obstacles limitation surfaces, apply the exception criteria, as it may not be possible to remove obstacles that violate the criteria if the aeronautical study determines that they do not impair the safety and regularity of aircraft operation. Aeronautical study has been applied and implemented in various countries including United States, Canada and Europe etc. accordingly, Korea established and amended some provisions of the Enforcement rules of the Aviation Act and established the Aeronautical study guidelines to approve exceptions. However, because ICAO does not provide specific guidelines on procedures and methods of Aeronautical study, countries conducting aeronautical study have established and applied their own procedures and methods. Reflecting this realistic situation, at the 12th World Navigation Conference and at the 38th General Assembly, the contracting States demanded a reexamination of the criteria for current obstacle limitation surfaces and methods of aeronautical study, and the ICAO dedicated a team of experts to prepare new standard. This study, in line with the movement of international change in obstacle limitation surface and aeronautical study, aims to compare and analyze current domestic and external standards on obstacle limitation and height limits, while looking at methods, procedure and systems for aeronautical study. In addition, expecting that aeronautical study will be used realistically and universally in assessing the impact of obstacles, we would recommend the institutional improvement of the aeronautical study along with the development of quantitative analysis methods using the navigation data in the current aeronautical study.

An Experimental Study on the Hydration Heat of Concrete Using Phosphate based Inorganic Salt (인산계 무기염을 이용한 콘크리트의 수화 발열 특성에 관한 실험적 연구)

  • Jeong, Seok-Man;Kim, Se-Hwan;Yang, Wan-Hee;Kim, Young-Sun;Ki, Jun-Do;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.489-495
    • /
    • 2020
  • Whereas the control of the hydration heat in mass concrete has been important as the concrete structures enlarge, many conventional strategies show some limitations in their effectiveness and practicality. Therefore, In this study, as a solution of controling the heat of hydration of mass concrete, a method to reduce the heat of hydration by controlling the hardening of cement was examined. The reduction of the hydration heat by the developed Phosphate Inorganic Salt was basically verified in the insulated boxes filled with binder paste or concrete mixture. That is, the effects of the Phosphate Inorganic Salt on the hydration heat, flow or slump, and compressive strength were analyzed in binary and ternary blended cement which is generally used for low heat. As a result, the internal maximum temperature rise induced by the hydration heat was decreased by 9.5~10.6% and 10.1~11.7% for binder paste and concrete mixed with the Phosphate Inorganic Salt, respectively. Besides, the delay of the time corresponding to the peak temperature was apparently observed, which is beneficial to the emission of the internal hydration heat in real structures. The Phosphate Inorganic Salt that was developed and verified by a series of the aforementioned experiments showed better performance than the existing ones in terms of the control of the hydration heat and other performance. It can be used for the purpose of hydration heat of mass concrete in the future.