• 제목/요약/키워드: 일반화하기

검색결과 3,717건 처리시간 0.031초

일반화된 문자 및 비디오 자막 영역 추출 방법 (A Generalized Method for Extracting Characters and Video Captions)

  • 전병태;배영래;김태윤
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권6호
    • /
    • pp.632-641
    • /
    • 2000
  • 기존의 문자 영역 추출 방법은 전체 영상에 대하여 컬러 축소(color reduction), 영역 분할 및 합병(region split and merge), 질감 분석(texture analysis)등과 같은 방법을 이용하여 문자 영역을 추출했다. 이 방법들은 많은 휴우리스틱(heuristic) 변수와 추출하고자 하는 문자의 사전 지식에 의해 임계치 값을 설정함으로서 알고리즘을 일반화하기 어렵다는 문제점이 있다. 본 논문에서는 문자의 지형학적 특징점 추출 방법과 점-선-면 확장법을 이용하여 문자 영역을 추출함으로서 기존 문자 영역 추출의 문제점인 휴우리스틱 변수의 사용을 최소화하고 임계치 값을 일반화함으로 서 일반화된 문자 영역 추출 방법을 제안 하고자 한다. 실험결과 일반화된 변수와 임계값을 사용함으로서 문자의 사전 지식 없이도 문자 영역을 추출함을 볼 수 있었다. 비디오 영상의 경우 후보 영역 추출율 100%, 검증을 통한 자막 영역 추출율은 98% 이상임을 볼 수 있었다.

  • PDF

일반화추정방정식을 활용한 소지역 추정과 실업률패널분석 (Small Area Estimation via Generalized Estimating Equations and the Panel Analysis of Unemployment Rates)

  • 여인권;손경진;김영원
    • 응용통계연구
    • /
    • 제21권4호
    • /
    • pp.665-674
    • /
    • 2008
  • 기존의 소지역추정 연구에서는 대부분 특정 시점에서의 관심 모수를 추정하는 문제를 다루어 왔다. 그러나 대부분의 공식통계들은 월, 분기, 또는 년 단위로 반복적으로 얻어지는 패널자료이기 때문에 이를 고려한 추정방법이 필요하다. 이 논문에서는 반복측정 또는 다시점자료 분석에 유용하게 사용되고 있는 일반화추정방정식을 이용한 실증분석을 통해 소지역추정에서 시간종속성을 포함시키는 방안을 알아본다. 실증분석에서는 2005년 1월에서 12월까지의 경상남도 및 울산광역시 월별 경제활동인구조사 자료를 바탕으로 시군구별 실업률과 실업률에 영향을 줄 것으로 생각되는 설명변수의 관계를 일반화선형모형과 일반화추정방정식을 적용하여 분석해 보고 시간종속성을 고려한 것과 하지 않은 것을 비교해 본다.

기운 일반화 t 분포를 이용한 이진 데이터 회귀 분석 (Binary regression model using skewed generalized t distributions)

  • 김미정
    • 응용통계연구
    • /
    • 제30권5호
    • /
    • pp.775-791
    • /
    • 2017
  • 이진 데이터는 일상 생활에서 자주 접할 수 있는 데이터이다. 이진 데이터를 회귀 분석하는 방법으로 로지스틱(Logistic), 프로빗(Probit), Cauchit, Complementary log-log 모형이 주로 쓰이는데, 이 방법 이외에도 Liu(2004)가 제시한 t 분포를 이용한 로빗(Robit) 모형, Kim 등 (2008)에서 제시한 일반화 t-link 모형을 이용한 방법 등이 있다. 유연한 분포를 이용하면 유연한 회귀 모형이 가능해지는 점에 착안하여, 이 논문에서는 Theodossiou(1998)에서 제시된 기운 일반화 t 분포 (Skewed Generalized t Distribution)의 이용하여 우도 함수를 최대로 하는 이진 데이터 회귀 모형을 소개한다. 기운 일반화 t 분포를 R glm 함수, R sgt 패키지를 연결하여 이 논문에서 제시한 방법을 R로 분석할 수 있는 방법을 소개하고, 피마 인디언(Pima Indian) 데이터를 분석한다.

일반화 쌍곡분포 기반 선형 포트폴리오 위험측도에 대한 안장점근사 (Saddlepoint approximations for the risk measures of linear portfolios based on generalized hyperbolic distributions)

  • 나종화
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권4호
    • /
    • pp.959-967
    • /
    • 2016
  • 자산의 수익에 대한 분포 가정은 파생 상품의 가치 평가에 매우 중요한 역할을 한다. Elberlein과 Keller (1995)는 오랜 기간에 걸친 주식 자료를 바탕으로 혼합 자산의 분포에 대한 다양한 검정을 수행한 결과, 정규성 가정이 만족되지 않음을 확인한 바 있으며, 일반화 쌍곡분포가 보다 현실을 잘 반영하는 모형임을 확인하였다. 또한, Hu와 Kercheval (2007)은 6년간의 S&P500 지수의 분석에서 정규분포는 VaR (value at risk)을 과소 추정하는 반면, 일반화 쌍곡분포는 잘 적합함을 확인하였다. 일반화 쌍곡분포는, Barndorff-Nielsen (1977)이 처음 소개한 분포로, 첨도가 큰 특징을 가지는 금융 자료의 적합에 유용한 분포이다. 본 연구에서는 일반화 쌍곡분포를 모분포로 하는 선형 포트폴리오의 위험측도를 추정한다. 위험측도로는 VaR과 ES (expected shortfall)를 고려하였으며, 추정 방법으로는 안장점근사를 사용하였다. 안장점근사는 소표본에서도 정확한 근사를 제공하는 근사법으로 알려져 있다. 모의실험을 통해 위험측도에 대한 안장점근사의 정도가 매우 우수함을 확인하였다.

임의의 사각형 QAM의 일반화된 비트 오율 분석 (Generalized BER Analysis of Arbitrary Rectangular QAM)

  • 윤동원;조경국;서기범
    • 한국통신학회논문지
    • /
    • 제27권10A호
    • /
    • pp.962-968
    • /
    • 2002
  • 무선통신 환경의 한정된 주파수 자원에서 신뢰성 있는 고속의 통신방식이 요구되고 있다. 직교 진폭 변조 (QAM) 는 대역폭의 증가없이 고속의 데이터 처리가 가능한 유용한 변조 방식이다. 이제까지 사각형(rectangular) 직교 진폭 변조 (R-QAM) 신호의 일반화된 BER 식은 유도된바 없다. 이 논문에서는 가산성 백색 가우시안 잡음 환경에서 그레이 부호화된 R-QAM의 일반화된 closed-from 형태의 EBR식을 유도하고 분석한다. 먼저 I-ary PAN 신호에 대하여 Irk 4, 8, 16 일 때의 유도하고 이 결과들로부터 유도 과정의 규칙성을 찾아내며, 그 규칙성들로부터 임의의 I-ary PAM 신호에 대한 일반화된 BER 식을 유도한다. R-QAM 신호는 각각 독립적인 동상 성분의 I-ary PAM 과 직교 성분의 J-ary PAM으로 구성되기 때문에 I-ary PAM 의 일반화된 BER 식으로부터 R-QAM 신호에 대한 일반화된 BER 식을 구한다. 또한 SNR이 높을 때에 지배적인 항을 고려한 간단한 근사식도 유도한다.

지질불연속면에 대한 탄성파 굴절법탐사 자료처리 고찰 - GRM, GLI, Tomography (A Model Study of Processing Methods of Seismic Refraction Data for Mapping Geological Discontinuities - GRM, GLI, Tomography)

  • 김지수;김수현;이준호;김원기;이용재
    • 지질공학
    • /
    • 제16권4호
    • /
    • pp.327-335
    • /
    • 2006
  • 지하 불연속면의 탐지를 위한 굴절법 탄성파 자료에 대하여 3가지의 중요한 자료처리기법을 속도와 심도의 관점에서 비교 관찰하였다. 즉 수치모델링으로 생성된 수평 3층, 경사 3층, 수직단층, 매몰 수직 파쇄대 구조에 대한 발파점 자료들을 일반화된 역행 주시법(GRM), 일반화된 선형 역산법(GLI), 토모그래피를 적용하여 그 자료처리 결과들을 서로 비교 분석하였다. 토모그래피는 수직단층, 매몰 파쇄대등의 복잡한 지형기복에서 보다 정확한 지하속도구조를 파악할 수 있는 반면에 일반화된 역행 주시법(GRM)과 일반화된 선형 역산법(GLI)은 수평구조와 경사 경계면 등의 평면 불연속면에 효과적으로 나타나는데 이것은 이들 방법이 주시곡선의 초동 분석위주로 수행되기 때문인 것으로 해석된다.

코로나-19로 인한 스트레스 지각과 범주 응집성이 범주기반 귀납적 일반화에 미치는 효과 (The effects of stress perception due to COVID-19 and category coherence on category-based inductive generalization)

  • 이국희;도은영
    • 인지과학
    • /
    • 제33권3호
    • /
    • pp.135-154
    • /
    • 2022
  • 본 연구는 코로나-19로 인한 스트레스를 높게 지각할 때, 스트레스를 낮게 지각할 때에 비하여 응집성이 낮은 사회적 범주에 대한 속성 일반화가 강해진다는 것을 확인하기 위해 이루어졌다. 이를 위해 본 연구는 응집성이 높은 범주(수녀, 군인, 비행기승무원)와 낮은 범주(웨딩플래너, 통역사, 플로리스트)를 선정하였고, 336명의 참가자를 모집하여 범주기반 속성 일반화 과제(범주 구성원 몇몇에게 반복 관찰되는 속성이 범주 구성원 전체에서 얼마나 나타날지 추론)를 수행하게 하였으며, 이들이 지각한 코로나-19 스트레스 정도를 측정하였다. 결과적으로, 사회적 범주의 응집성이 높을 때, 낮을 때에 비하여 속성 일반화가 강해지는 효과와 코로나-19로 인한 스트레스를 높게 지각하는 사람들에게서 낮게 지각하는 사람들보다 속성 일반화가 강해지는 효과를 관찰하였다. 더하여 본 연구는 코로나-19 스트레스를 높게 지각하는 사람들은 스트레스를 낮게 지각하는 사람들에 비해, 응집성이 낮은 범주에서도 반복 관찰되는 속성을 강하게 일반화하는 경향이 있음을 확인하였다. 본 연구는 코로나-19 발생 이후 고정관념과 편견이 심화되고, 차별적 행동이 증가하는 현상의 근본에 코로나-19 스트레스와 이로 인한 속성 일반화 경향 증가라는 인지적 기제가 존재함을 보여 준다는 측면에서 중요하다.

데이터 증가를 통한 선형 모델의 일반화 성능 개량 (중심극한정리를 기반으로) (Improvement of generalization of linear model through data augmentation based on Central Limit Theorem)

  • 황두환
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.19-31
    • /
    • 2022
  • 기계학습 모델 구축 간 트레이닝 데이터를 활용하며, 훈련 간 사용되지 않은 테스트 데이터를 활용하여 모델의 정확도와 일반화 성능을 판단한다. 일반화 성능이 낮은 모델의 경우 새롭게 받아들이게 되는 데이터에 대한 예측 정확도가 현저히 감소하게 되며 이러한 현상을 두고 모델이 과적합 되었다고 한다. 본 연구는 중심극한정리를 기반으로 데이터를 생성 및 기존의 훈련용 데이터와 결합하여 새로운 훈련용 데이터를 구성하고 데이터의 정규성을 증가시킴과 동시에 이를 활용하여 모델의 일반화 성능을 증가시키는 방법에 대한 것이다. 이를 위해 중심극한정리의 성질을 활용해 데이터의 각 특성별로 표본평균 및 표준편차를 활용하여 데이터를 생성하였고, 새로운 훈련용 데이터의 정규성 증가 정도를 파악하기 위하여 Kolmogorov-Smirnov 정규성 검정을 진행한 결과, 새로운 훈련용 데이터가 기존의 데이터에 비해 정규성이 증가하였음을 확인할 수 있었다. 일반화 성능은 훈련용 데이터와 테스트용 데이터에 대한 예측 정확도의 차이를 통해 측정하였다. 새롭게 생성된 데이터를 K-Nearest Neighbors(KNN), Logistic Regression, Linear Discriminant Analysis(LDA)에 적용하여 훈련시키고 일반화 성능 증가정도를 파악한 결과, 비모수(non-parametric) 기법인 KNN과 모델 구성 간 정규성을 가정으로 갖는 LDA의 경우에 대하여 일반화 성능이 향상되었음을 확인할 수 있었다.

고차 일반화극치분포와 PMLE를 이용한 환율자료분석

  • 정보윤;전유나;박정수
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 추계학술대회
    • /
    • pp.147-152
    • /
    • 2003
  • 본 논문에서는 일반화극치분포(GEV)와 r개의 순서통계량을 이용한 r-GEV를 기술하였다. 모수 $\mu,\;\sigma$, k 를 추정하기 위해 최우추정법(MLE)과 Penalized MLE(P-MLE) 방법을 적용해 보았다. 이 분포를 원/달러 환율자료에 적용하여 일종의 재정위기 분석을 실시하였다.

  • PDF