기존의 문자 영역 추출 방법은 전체 영상에 대하여 컬러 축소(color reduction), 영역 분할 및 합병(region split and merge), 질감 분석(texture analysis)등과 같은 방법을 이용하여 문자 영역을 추출했다. 이 방법들은 많은 휴우리스틱(heuristic) 변수와 추출하고자 하는 문자의 사전 지식에 의해 임계치 값을 설정함으로서 알고리즘을 일반화하기 어렵다는 문제점이 있다. 본 논문에서는 문자의 지형학적 특징점 추출 방법과 점-선-면 확장법을 이용하여 문자 영역을 추출함으로서 기존 문자 영역 추출의 문제점인 휴우리스틱 변수의 사용을 최소화하고 임계치 값을 일반화함으로 서 일반화된 문자 영역 추출 방법을 제안 하고자 한다. 실험결과 일반화된 변수와 임계값을 사용함으로서 문자의 사전 지식 없이도 문자 영역을 추출함을 볼 수 있었다. 비디오 영상의 경우 후보 영역 추출율 100%, 검증을 통한 자막 영역 추출율은 98% 이상임을 볼 수 있었다.
기존의 소지역추정 연구에서는 대부분 특정 시점에서의 관심 모수를 추정하는 문제를 다루어 왔다. 그러나 대부분의 공식통계들은 월, 분기, 또는 년 단위로 반복적으로 얻어지는 패널자료이기 때문에 이를 고려한 추정방법이 필요하다. 이 논문에서는 반복측정 또는 다시점자료 분석에 유용하게 사용되고 있는 일반화추정방정식을 이용한 실증분석을 통해 소지역추정에서 시간종속성을 포함시키는 방안을 알아본다. 실증분석에서는 2005년 1월에서 12월까지의 경상남도 및 울산광역시 월별 경제활동인구조사 자료를 바탕으로 시군구별 실업률과 실업률에 영향을 줄 것으로 생각되는 설명변수의 관계를 일반화선형모형과 일반화추정방정식을 적용하여 분석해 보고 시간종속성을 고려한 것과 하지 않은 것을 비교해 본다.
이진 데이터는 일상 생활에서 자주 접할 수 있는 데이터이다. 이진 데이터를 회귀 분석하는 방법으로 로지스틱(Logistic), 프로빗(Probit), Cauchit, Complementary log-log 모형이 주로 쓰이는데, 이 방법 이외에도 Liu(2004)가 제시한 t 분포를 이용한 로빗(Robit) 모형, Kim 등 (2008)에서 제시한 일반화 t-link 모형을 이용한 방법 등이 있다. 유연한 분포를 이용하면 유연한 회귀 모형이 가능해지는 점에 착안하여, 이 논문에서는 Theodossiou(1998)에서 제시된 기운 일반화 t 분포 (Skewed Generalized t Distribution)의 이용하여 우도 함수를 최대로 하는 이진 데이터 회귀 모형을 소개한다. 기운 일반화 t 분포를 R glm 함수, R sgt 패키지를 연결하여 이 논문에서 제시한 방법을 R로 분석할 수 있는 방법을 소개하고, 피마 인디언(Pima Indian) 데이터를 분석한다.
Journal of the Korean Data and Information Science Society
/
제27권4호
/
pp.959-967
/
2016
자산의 수익에 대한 분포 가정은 파생 상품의 가치 평가에 매우 중요한 역할을 한다. Elberlein과 Keller (1995)는 오랜 기간에 걸친 주식 자료를 바탕으로 혼합 자산의 분포에 대한 다양한 검정을 수행한 결과, 정규성 가정이 만족되지 않음을 확인한 바 있으며, 일반화 쌍곡분포가 보다 현실을 잘 반영하는 모형임을 확인하였다. 또한, Hu와 Kercheval (2007)은 6년간의 S&P500 지수의 분석에서 정규분포는 VaR (value at risk)을 과소 추정하는 반면, 일반화 쌍곡분포는 잘 적합함을 확인하였다. 일반화 쌍곡분포는, Barndorff-Nielsen (1977)이 처음 소개한 분포로, 첨도가 큰 특징을 가지는 금융 자료의 적합에 유용한 분포이다. 본 연구에서는 일반화 쌍곡분포를 모분포로 하는 선형 포트폴리오의 위험측도를 추정한다. 위험측도로는 VaR과 ES (expected shortfall)를 고려하였으며, 추정 방법으로는 안장점근사를 사용하였다. 안장점근사는 소표본에서도 정확한 근사를 제공하는 근사법으로 알려져 있다. 모의실험을 통해 위험측도에 대한 안장점근사의 정도가 매우 우수함을 확인하였다.
무선통신 환경의 한정된 주파수 자원에서 신뢰성 있는 고속의 통신방식이 요구되고 있다. 직교 진폭 변조 (QAM) 는 대역폭의 증가없이 고속의 데이터 처리가 가능한 유용한 변조 방식이다. 이제까지 사각형(rectangular) 직교 진폭 변조 (R-QAM) 신호의 일반화된 BER 식은 유도된바 없다. 이 논문에서는 가산성 백색 가우시안 잡음 환경에서 그레이 부호화된 R-QAM의 일반화된 closed-from 형태의 EBR식을 유도하고 분석한다. 먼저 I-ary PAN 신호에 대하여 Irk 4, 8, 16 일 때의 유도하고 이 결과들로부터 유도 과정의 규칙성을 찾아내며, 그 규칙성들로부터 임의의 I-ary PAM 신호에 대한 일반화된 BER 식을 유도한다. R-QAM 신호는 각각 독립적인 동상 성분의 I-ary PAM 과 직교 성분의 J-ary PAM으로 구성되기 때문에 I-ary PAM 의 일반화된 BER 식으로부터 R-QAM 신호에 대한 일반화된 BER 식을 구한다. 또한 SNR이 높을 때에 지배적인 항을 고려한 간단한 근사식도 유도한다.
지하 불연속면의 탐지를 위한 굴절법 탄성파 자료에 대하여 3가지의 중요한 자료처리기법을 속도와 심도의 관점에서 비교 관찰하였다. 즉 수치모델링으로 생성된 수평 3층, 경사 3층, 수직단층, 매몰 수직 파쇄대 구조에 대한 발파점 자료들을 일반화된 역행 주시법(GRM), 일반화된 선형 역산법(GLI), 토모그래피를 적용하여 그 자료처리 결과들을 서로 비교 분석하였다. 토모그래피는 수직단층, 매몰 파쇄대등의 복잡한 지형기복에서 보다 정확한 지하속도구조를 파악할 수 있는 반면에 일반화된 역행 주시법(GRM)과 일반화된 선형 역산법(GLI)은 수평구조와 경사 경계면 등의 평면 불연속면에 효과적으로 나타나는데 이것은 이들 방법이 주시곡선의 초동 분석위주로 수행되기 때문인 것으로 해석된다.
본 연구는 코로나-19로 인한 스트레스를 높게 지각할 때, 스트레스를 낮게 지각할 때에 비하여 응집성이 낮은 사회적 범주에 대한 속성 일반화가 강해진다는 것을 확인하기 위해 이루어졌다. 이를 위해 본 연구는 응집성이 높은 범주(수녀, 군인, 비행기승무원)와 낮은 범주(웨딩플래너, 통역사, 플로리스트)를 선정하였고, 336명의 참가자를 모집하여 범주기반 속성 일반화 과제(범주 구성원 몇몇에게 반복 관찰되는 속성이 범주 구성원 전체에서 얼마나 나타날지 추론)를 수행하게 하였으며, 이들이 지각한 코로나-19 스트레스 정도를 측정하였다. 결과적으로, 사회적 범주의 응집성이 높을 때, 낮을 때에 비하여 속성 일반화가 강해지는 효과와 코로나-19로 인한 스트레스를 높게 지각하는 사람들에게서 낮게 지각하는 사람들보다 속성 일반화가 강해지는 효과를 관찰하였다. 더하여 본 연구는 코로나-19 스트레스를 높게 지각하는 사람들은 스트레스를 낮게 지각하는 사람들에 비해, 응집성이 낮은 범주에서도 반복 관찰되는 속성을 강하게 일반화하는 경향이 있음을 확인하였다. 본 연구는 코로나-19 발생 이후 고정관념과 편견이 심화되고, 차별적 행동이 증가하는 현상의 근본에 코로나-19 스트레스와 이로 인한 속성 일반화 경향 증가라는 인지적 기제가 존재함을 보여 준다는 측면에서 중요하다.
기계학습 모델 구축 간 트레이닝 데이터를 활용하며, 훈련 간 사용되지 않은 테스트 데이터를 활용하여 모델의 정확도와 일반화 성능을 판단한다. 일반화 성능이 낮은 모델의 경우 새롭게 받아들이게 되는 데이터에 대한 예측 정확도가 현저히 감소하게 되며 이러한 현상을 두고 모델이 과적합 되었다고 한다. 본 연구는 중심극한정리를 기반으로 데이터를 생성 및 기존의 훈련용 데이터와 결합하여 새로운 훈련용 데이터를 구성하고 데이터의 정규성을 증가시킴과 동시에 이를 활용하여 모델의 일반화 성능을 증가시키는 방법에 대한 것이다. 이를 위해 중심극한정리의 성질을 활용해 데이터의 각 특성별로 표본평균 및 표준편차를 활용하여 데이터를 생성하였고, 새로운 훈련용 데이터의 정규성 증가 정도를 파악하기 위하여 Kolmogorov-Smirnov 정규성 검정을 진행한 결과, 새로운 훈련용 데이터가 기존의 데이터에 비해 정규성이 증가하였음을 확인할 수 있었다. 일반화 성능은 훈련용 데이터와 테스트용 데이터에 대한 예측 정확도의 차이를 통해 측정하였다. 새롭게 생성된 데이터를 K-Nearest Neighbors(KNN), Logistic Regression, Linear Discriminant Analysis(LDA)에 적용하여 훈련시키고 일반화 성능 증가정도를 파악한 결과, 비모수(non-parametric) 기법인 KNN과 모델 구성 간 정규성을 가정으로 갖는 LDA의 경우에 대하여 일반화 성능이 향상되었음을 확인할 수 있었다.
본 논문에서는 일반화극치분포(GEV)와 r개의 순서통계량을 이용한 r-GEV를 기술하였다. 모수 $\mu,\;\sigma$, k 를 추정하기 위해 최우추정법(MLE)과 Penalized MLE(P-MLE) 방법을 적용해 보았다. 이 분포를 원/달러 환율자료에 적용하여 일종의 재정위기 분석을 실시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.