• Title/Summary/Keyword: 일반촬영장비

Search Result 57, Processing Time 0.025 seconds

Evaluation of Image Usability by SEMAC Turbo Factor Change using Susceptibility Artifact Reduction (Susceptibility Artifact를 감소시키는 SEMAC 사용 시 Turbo Factor 변화에 따른 영상의 유용성 평가)

  • Choi, Young-Jae;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • The study analyzes Non SEMAC and SEMAC to reduce susceptibility artifacts that may occur when performing magnetic resonance imaging(MRI) of metal patients. The Foot and Ankle Phantom was used as the experimental tool and the 3.8 cm general screw was used to make the magnetic susceptibility artifact. The experimental equipment was used 3.0T Magnetom Skyra and the area was measured with the 17th image where the signal off is the most noticeable in the obtained image. Statistical analysis was performed using the SPSS(Ver.25) program and the significance was assessed by the Wilcoxon Signed Rank Test. As a result, the area of Non SEMAC which is the lowest signal was $289.53{\pm}23.07197mm$. When the Turbo Factor was changed to 3, 4, and 5 after SEMAC use, it decreased to $125.02{\pm}7.45875mm$, $120.96{\pm}12.01704mm$ and $108.79{\pm}16.53498mm$, respectively. In conclusion, this study demonstrates that Using SEMAC with Turbo Factor effectively reduces the susceptibility artifacts.

Comparison of the Accuracy of Stereo Camera Calibration According to the Types of Checkerboards (체커보드의 유형에 따른 스테레오 카메라 캘리브레이션의 정확도 비교)

  • Kim, Eui Myoung;Kwon, Sang Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.511-519
    • /
    • 2020
  • For camera calibration, a checkerboard is generally used to determine the principal point, focal length, and lens distortions. The checkerboard has a planar and three-dimensional shape, and camera calibration parameters are affected by the size of the checkerboard, the placement of the target, and the number of target points. In this study, the accuracies of the types of checkerboards were compared using checkpoints for stereo camera calibration, and the purpose of this study was to propose the best performance checkerboard. The checkerboard with large flat shape showed comparatively high accuracy through comparison with the check points. However, due to the size of the checkerboard, it was inconvenient to move and rotate, and there was a disadvantage in that it was difficult to shoot so that the target points could all appear in the stereo camera. The checkerboard, which was manufactured in a small size in a flat shape, was easy to move and rotate but had the lowest three-dimensional accuracy. The checkerboard with targets with height values had the hassle of having to determine the three-dimensional coordinates of the target points by using observation equipment for camera calibration, but it was small in size, convenient to move and rotate, and showed the highest three-dimensional accuracy.

The Evaluation of Usefulness of Pixelated Breast-Specific Gamma Imaging in Thyroid scan (Pixelated Breast-Specific Gamma Imaging(BSGI) 감마 카메라를 이용한 갑상선 검사의 유용성 평가)

  • Jung, Eun-Mi;Seong, Ji-Hye;Yoo, Hee-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.90-93
    • /
    • 2011
  • Purpose: A Pixelated BSGI gamma camera has features to enhance resolution and sensitivity and minimize the distance between detector and organs by narrow FOV. Therefore, it is known as useful device to examine small organs such as thyroid, parathyroid and gall bladder. In general, when we would like to enlarge the size of images and obtain high resolution images by gamma camera in nuclear medicine study, we use pinhole collimator. The purpose of this study is to evaluate the usefulness of Pixelated BSGI gamma camera and to compare to it using pinhole collimator in thyroid scan which is a study of typical small organs. Materials and methods: (1) The evaluation of sensitivity and spatial resolution: We measured sensitivity and spatial resolution of Pixelated BSGI with LEHR collimator and Infinia gamma camera with pinhole collimator. The sensitivity was measured by point source sensitivity test recommended by IAEA. We acquired images considering dead time in BSGI gamma camera for 100 seconds and used $^{99m}TcO4-\;400{\mu}Ci$ line source. (2) The evaluation of thyroid phantom: The thyroid phantom was filled with $^{99m}TcO4-$. After set 300 sec or 100 kcts stop conditions, we acquired images from both pixelated BSGI gamma camera and Infinia gamma camera with LEHR collimator. And we performed all thyroid studies in the same way as current AMC's procedure. Results: (1) the result of sensitivity: As a result, the sensitivity and spatial resolution of pixelated BSGI gamma camera were better than Infinia's. The sensitivities of pixelated BSGI and Infinia gamma camera were $290cps/{\mu}Ci$ and $350cps/{\mu}Ci$ respectively. So, the sensitivity of pixelated BSGI was 1.2 times higher than Infinia's (2) the result of thyroid phantom: Consequently, we confirmed that images of Pixelated BSGI gamma camera were more distinguishable between hot and cold spot compared with Infinia gamma camera. Conclusion: A pixelated BSGI gamma camera is able to shorten the acquisition time. Furthermore, the patients are exposed to radiation less than before by reducing amount of radiopharmaceutical doses. Shortening scan time makes images better by minimizing patient's breath and motion. And also, the distance between organ and detector is minimized because detector of pixelated BSGI gamma camera is small and possible to rotate. When patient cannot move at all, it is useful since device is feasible to move itself. However, although a pixelated BSGI gamma camera has these advantages, the effect of dead time occurs over 2000 cts/s since it was produced only for breast scan. So, there were low concentrations in organ. Therefore, we should consider that it needs to take tests to adjust acquisition time and amount of radiopharmaceutical doses in thyroid scan case with a pixelated BSGI gamma camera.

  • PDF

The Evaluation of SUV Variations According to the Errors of Entering Parameters in the PET-CT Examinations (PET/CT 검사에서 매개변수 입력오류에 따른 표준섭취계수 평가)

  • Kim, Jia;Hong, Gun Chul;Lee, Hyeok;Choi, Seong Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.43-48
    • /
    • 2014
  • Purpose: In the PET/CT images, The SUV (standardized uptake value) enables the quantitative assessment according to the biological changes of organs as the index of distinction whether lesion is malignant or not. Therefore, It is too important to enter parameters correctly that affect to the SUV. The purpose of this study is to evaluate an allowable error range of SUV as measuring the difference of results according to input errors of Activity, Weight, uptake Time among the parameters. Materials and Methods: Three inserts, Hot, Teflon and Air, were situated in the 1994 NEMA Phantom. Phantom was filled with 27.3 MBq/mL of 18F-FDG. The ratio of hotspot area activity to background area activity was regulated as 4:1. After scanning, Image was re-reconstructed after incurring input errors in Activity, Weight, uptake Time parameters as ${\pm}5%$, 10%, 15%, 30%, 50% from original data. ROIs (region of interests) were set one in the each insert areas and four in the background areas. $SUV_{mean}$ and percentage differences were calculated and compared in each areas. Results: $SUV_{mean}$ of Hot. Teflon, Air and BKG (Background) areas of original images were 4.5, 0.02. 0.1 and 1.0. The min and max value of $SUV_{mean}$ according to change of Activity error were 3.0 and 9.0 in Hot, 0.01 and 0.04 in Teflon, 0.1 and 0.3 in Air, 0.6 and 2.0 in BKG areas. And percentage differences were equally from -33% to 100%. In case of Weight error showed $SUV_{mean}$ as 2.2 and 6.7 in Hot, 0.01 and 0.03 in Tefron, 0.09 and 0.28 in Air, 0.5 and 1.5 in BKG areas. And percentage differences were equally from -50% to 50% except Teflon area's percentage deference that was from -50% to 52%. In case of uptake Time error showed $SUV_{mean}$ as 3.8 and 5.3 in Hot, 0.01 and 0.02 in Teflon, 0.1 and 0.2 in Air, 0.8 and 1.2 in BKG areas. And percentage differences were equally from 17% to -14% in Hot and BKG areas. Teflon area's percentage difference was from -50% to 52% and Air area's one was from -12% to 20%. Conclusion: As shown in the results, It was applied within ${\pm}5%$ of Activity and Weight errors if the allowable error range was configured within 5%. So, The calibration of dose calibrator and weighing machine has to conduct within ${\pm}5%$ error range because they can affect to Activity and Weight rates. In case of Time error, it showed separate error ranges according to the type of inserts. It showed within 5% error when Hot and BKG areas error were within ${\pm}15%$. So we have to consider each time errors if we use more than two clocks included scanner's one during the examinations.

  • PDF

Analysis of dose reduction of surrounding patients in Portable X-ray (Portable X-ray 검사 시 주변 환자 피폭선량 감소 방안 연구)

  • Choe, Deayeon;Ko, Seongjin;Kang, Sesik;Kim, Changsoo;Kim, Junghoon;Kim, Donghyun;Choe, Seokyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • Nowadays, the medical system towards patients changes into the medical services. As the human rights are improved and the capitalism is enlarged, the rights and needs of patients are gradually increasing. Also, based on this change, several systems in hospitals are revised according to the convenience and needs of patients. Thus, the cases of mobile portable among examinations are getting augmented. Because the number of mobile portable examinations in patient's room, intensive care unit, operating room and recovery room increases, neighboring patients are unnecessarily exposed to radiation so that the examination is legally regulated. Hospitals have to specify that "In case that the examination is taken out of the operating room, emergency room or intensive care units, the portable medical X-ray protective blocks should be set" in accordance with the standards of radiation protective facility in diagnostic radiological system. Some keep this regulation well, but mostly they do not keep. In this study, we shielded around the Collimator where the radiation is detected and then checked the change of dose regarding that of angles in portable tube and collimator before and after shielding. Moreover, we tried to figure out the effects of shielding on dose according to the distance change between patients' beds. As a result, the neighboring areas around the collimator are affected by the shielding. After shielding, the radiation is blocked 20% more than doing nothing. When doing the portable examination, the exposure doses are increased $0^{\circ}C$, $90^{\circ}C$ and $45^{\circ}C$ in order. At the time when the angle is set, the change of doses around the collimator decline after shielding. In addition, the exposure doses related to the distance of beds are less at 1m than 0.5m. In consideration of the shielding effects, putting the beds as far as possible is the best way to block the radiation, which is close to 100%. Next thing is shielding the collimator and its effect is about 20%, and it is more or less 10% by controlling the angles. When taking the portable examination, it is better to keep the patients and guardians far enough away to reduce the exposure doses. However, in case that the bed is fixed and the patient cannot move, it is suggested to shield around the collimator. Furthermore, $90^{\circ}C$ of collimator and tube is recommended. If it is not possible, the examination should be taken at $0^{\circ}C$ and $45^{\circ}C$ is better to be disallowed. The radiation-related workers should be aware of above results, and apply them to themselves in practice. Also, it is recommended to carry out researches and try hard to figure out the ways of reducing the exposure doses and shielding the radiation effectively.

Measurement of Rectal Rodiation dose in the Patients with Uterine Cervix fencer using In Vivo Dosimetry(Diode Detector) (자궁경부암 환자에서 In vivo dosimetry(Diode detector)를 이용할 직장선량의 측정)

  • Kim, Sung-Kee;Kim, Wan-Sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.29-37
    • /
    • 2004
  • Purpose : A rectum and a bladder should be carefully considered in order to decrease side effects when HDR patient of uterine cervix cancer. Generally speaking, the value of dosimeter at a rectum and a bladder only depends on the value of a planning equipment, while some analyses of the value of dosimetry at rectum with TLD has been reported Or the contrary, it is hardly to find a report with in vivo dosimetry(diode detector). On this thesis, we would like to suggest the following. When a patient of uterine cervix cancer is in therapy, it is helpful to put a diode detector inside of a rectum in order to measure the rectal dose Based upon the result of the dosimetry, the result can be used as basic data at decreasing side effects. Materials and Methods : Six patients of uterine cervix cancer(four with tandem and ovoid, one with cylinder, and the other one with tandem and cylinder) who had been irradiated with HDR. Ir-192 totally 28 times from February 2003 to June 2003. We irradiated twice in the same distant spots with anterior film and lateral film whenever we measured with a diode detector. Then we did planning and compared each film. Results : The result of the measurement 4 patients with a diode detector is the following. The average and deviation from 3 patients with tandem and ovoid were $274.1{\pm}13.4cGy$, from 1 patient with tandem and ovoid were $126.1{\pm}7.2cGy$, from 1 patient with cylinder were $99.7{\pm}7.1cGy$, and from 1 patient with tandem and cylinder were $77.7{\pm}11.5cGy$. Conclusion : It is difficult to predict how the side effect of a rectum since the result of measurement with a diode detector depends on the state of a rectum. According to the result of the study, it is effective to use a TLD or an in vivo dosimetry and measure a rectum in order to consider the side effect. It is very necessary to decrease the amount of irradiation by controlling properly the duration of the irradiation and gauze packing, and by using shield equipments especially when side effects can be expected.

  • PDF

Evaluation of Application Possibility for Floating Marine Pollutants Detection Using Image Enhancement Techniques: A Case Study for Thin Oil Film on the Sea Surface (영상 강화 기법을 통한 부유성 해양오염물질 탐지 기술 적용 가능성 평가: 해수면의 얇은 유막을 대상으로)

  • Soyeong Jang;Yeongbin Park;Jaeyeop Kwon;Sangheon Lee;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1353-1369
    • /
    • 2023
  • In the event of a disaster accident at sea, the scale of damage will vary due to weather effects such as wind, currents, and tidal waves, and it is obligatory to minimize the scale of damage by establishing appropriate control plans through quick on-site identification. In particular, it is difficult to identify pollutants that exist in a thin film at sea surface due to their relatively low viscosity and surface tension among pollutants discharged into the sea. Therefore, this study aims to develop an algorithm to detect suspended pollutants on the sea surface in RGB images using imaging equipment that can be easily used in the field, and to evaluate the performance of the algorithm using input data obtained from actual waters. The developed algorithm uses image enhancement techniques to improve the contrast between the intensity values of pollutants and general sea surfaces, and through histogram analysis, the background threshold is found,suspended solids other than pollutants are removed, and finally pollutants are classified. In this study, a real sea test using substitute materials was performed to evaluate the performance of the developed algorithm, and most of the suspended marine pollutants were detected, but the false detection area occurred in places with strong waves. However, the detection results are about three times better than the detection method using a single threshold in the existing algorithm. Through the results of this R&D, it is expected to be useful for on-site control response activities by detecting suspended marine pollutants that were difficult to identify with the naked eye at existing sites.