64bit 범용 서버의 활용 확산, 메모리 가격의 하락 등 하드웨어의 발전과 실시간성을 요구하는 응응 분야의 확대로 인해 인-메모리 컴퓨팅 기술에 대한 관심이 높아지고 있다. 인-메모리 컴퓨팅 기술은 응용 서비스의 클라우드화, 모바일화, 글로벌화로 인해 발생하는 익스트림 트랜잭션의 고성능 처리를 지원하기 위한 기반 기술로 활용이 확대되고 있다. 또한 빅데이터를 효과적으로 활용하기 위해서 빅데이터라는 원석을 보석으로 가공하는 데 있어서 실시간성을 제공하기 위한 기반 플랫폼으로서 활용이 시도되고 있다. 본고에서는 고성능 트랜잭션 처리를 필요로 하는 통신, 금융 등 특정 분야에서 주로 활용되던 인-메모리 DBMS(Datbase Management System) 기술이 익스트림 트랜잭션 서비스 환경, 빅데이터 실시간 분석 환경 등 새로운 서비스 환경을 지원하기 위한 기술 발전 동향에 대해 조사한다.
이 논문에서는 기계학습 워크로드의 특징을 분석하고 이를 기반으로 기계학습 워크로드의 성능 향상을 위한 분산 인-메모리 캐싱 기법을 제안한다. 기계학습 워크로드의 핵심은 모델 학습이며 모델 학습은 컴퓨팅 집약적 (Computation Intensive)인 작업이다. 쿠버네티스 기반 클라우드 환경에서 컴퓨팅 프레임워크와 스토리지를 분리한 구조에서 기계학습 워크로드를 수행하는 것은 자원을 효과적으로 할당할 수 있지만, 네트워크 통신을 통해 IO가 수행되야 하므로 지연이 발생할 수 있다. 이 논문에서는 이런 환경에서 수행되는 머신러닝 워크로드의 성능을 향상하기 위한 분산 인-메모리 캐싱 기법을 제안한다. 특히, 제안하는 방법은 쿠버네티스 기반의 머신러닝 파이프라인 관리 도구인 쿠브플로우를 고려하여 머신러닝 워크로드에 필요한 데이터를 분산 인-메모리 캐시에 미리 로드하는 새로운 방법을 제안한다.
SRAM 기반 인 메모리 컴퓨팅은 폰 노이만 구조의 병목 현상을 해결하는 기술 중 하나이다. SRAM 기반의 인 메모리 컴퓨팅을 구현하기 위해서는 효율적인 SRAM 비트 셀 설계가 필수적이다. 본 논문에서는 전력 소모를 감소시키고 회로 성능을 개선시키는 저 전력 차동 감지 8+T SRAM 비트 셀을 제안한다. 제안하는 8+T SRAM 비트 셀은 SRAM 읽기와 비트 연산을 동시에 수행하고 각 논리 연산을 병렬로 수행하는 리플 캐리 가산기에 적용한다. 제안하는 8+T SRAM 기반 리플 캐리 가산기는 기존 구조와 비교 하여 전력 소모는 11.53% 감소하였지만, 전파 지연 시간은 6.36% 증가하였다. 또한 이 가산기는 PDP(: Power Delay Product)가 5.90% 감소, EDP(: Energy Delay Product)가 0.08% 증가하였다. 제안한 회로는 TSMC 65nm CMOS 공정을 이용하여 설계하였으며, SPECTRE 시뮬레이션을 통해 타당성을 검증하였다.
감지 증폭기는 메모리 설계에 필수적인 주변 회로로서, 작은 차동 입력 신호를 감지하여 디지털 신호로 증폭하기 위해 사용된다. 본 논문에서는 인 메모리 컴퓨팅 회로에서 활용 가능한 고속 감지 증폭기를 제안하였다. 제안하는 회로는 추가적인 방전 경로를 제공하는 트랜지스터 Mtail을 통해 감지 지연 시간을 감소시키고, m-GDI(:modified Gate Diffusion Input)를 적용하여 감지 증폭기의 회로 성능을 개선하였다. 기존 구조와 비교했을 때 감지 지연 시간은 16.82% 감소하였으며, PDP(: Power Delay Product)는 17.23%, EDP(: Energy Delay Product)은 31.1%가 감소하는 결과를 보였다. 제안하는 회로는 TSMC의 65nm CMOS 공정을 사용하여 구현하였으며 SPECTRE 시뮬레이션을 통해 본 연구의 타당성을 검증하였다.
최근 클라우드 플랫폼을 효율적으로 사용하기 위한 컨테이너 기술들이 주목을 받고 있다. 컨테이너 가상화 기술은 기존 하이퍼바이저와 비교하였을 때 이식성이 뛰어나고 집적도가 높다는 장점을 가지고 있다. 하지만 컨테이너 가상화 기술은 하나의 커널을 공유하여 복수개의 인스턴스를 구동하는 운영체제 레벨의 가상화 기술을 사용하기 때문에 인스턴스 간 공유 자원 요소가 많아져 취약성 또한 증가하는 보안 문제를 가지고 있다. 컨테이너는 컴퓨팅 자원의 효율적 운용을 위해 호스트 운영체제의 라이브러리를 공유하는 특성으로 인해 공격자는 커널의 취약점을 이용하여 호스트 운영체제의 루트 권한 획득 공격이 가능하다. 본 논문에서는 컨테이너가 사용하는 특정 메모리 영역의 변화를 감지하고, 감지 시에는 해당 컨테이너의 동작을 중지시키는 메모리 트랩 기법을 사용하여 컨테이너 내부에서 발생되는 호스트 운영체제의 루트 권한 탈취 공격을 효율적으로 탐지 및 대응하기 위한 프레임워크를 제안한다.
최근 고성능 네트워크 기술을 기반으로 다수의 컴퓨터를 활용하여 클러스터를 구축하고 고성능 컴퓨팅 환경을 제공하기 위한 연구가 활발하게 이루어지고 있다. 이와 같은 고성능 클러스터 환경에서 각 컴퓨팅 노드의 데이터 처리 성능을 향상시키기 위하여 Redis, Memcached와 같은 인-메모리 기반 키-값 데이터 저장소를 활용하고 있다. 이를 통해 인-메모리 기반으로 데이터를 분산 저장하고 각 컴퓨팅 노드에서 필요한 데이터를 고속으로 접근할 수 있다. 인피니밴드는 이와 같은 고성능 클러스터에서 각 컴퓨팅 노드를 연결하기 위한 사실상의 표준 기술이다. 본 논문에서는 키-값 데이터 저장소 기반 고성능 클러스터 컴퓨팅 시스템의 데이터 처리 성능을 향상시키기 위해 인피니밴드 네트워크의 데이터 송수신 지연 특성을 활용한 데이터 선반입 기법을 제안한다. 시뮬레이션을 통해 제안 기법이 기존 기법보다 데이터 송수신 소요시간을 최대 약 28% 줄여 컴퓨팅 성능을 향상 시킬 수 있음을 보인다.
클라우드 컴퓨팅 기반의 인프라 구축이 활성화됨에 따라, 안전성과 보안성이 강화된 클라우드 구축을 위한 기술이 큰 화두로 인식되고 있다. 이에 대한 방안으로써, 클라우드 사용자 인스턴스의 시스템 보안 강화를 위한 다양한 보안 솔루션이 등장하고 있다. 특히 인스턴스(가상머신)의 메모리 분석을 통한 악성코드 분석 및 탐지에 관한 연구가 활발히 진행되고 있다. 하지만 메모리 분석을 통한 보안 모니터링 기술은 메모리 덤프 시 수반되는 연산 오버헤드로 인해 다수의 인스턴스가 하나의 물리적 서버 노드에서 구동되는 클라우드 플랫폼과 같은 환경으로의 적용에 어려움이 있어왔다. 본 논문에서는 메모리 덤프 시 발생하는 오버헤드를 최소화하기 위해 악성코드 분석 및 탐지에 필요한 인스턴스 메모리의 특정 부분을 모니터링 하는 기술을 제안하고, 부분 메모리 모니터링 기반 악성코드 탐지 시스템을 통해 제안 기술의 실효성을 검증한다.
본 논문은 인 메모리 시스템인 Spark에 기반 한 공간 빅 데이터 분석 프로토타입을 구현하고, 이를 기반으로 공간 분할 알고리즘에 따른 성능을 비교하였다. 클러스터 컴퓨팅 환경에서 빅 데이터의 컴퓨팅 부하를 균형 분산하기 위해, 빅 데이터는 일정 크기의 순차적 블록 단위로 분할된다. 기존의 연구에서 하둡 기반의 공간 빅 데이터 시스템의 경우 일반 순차 분할 방법보다 공간에 따른 분할 방법이 효과적임이 제시되었다. 하둡 기반의 공간 빅 데이터 시스템들은 원 데이터를 그대로 공간 분할된 블록에 저장한다. 하지만 제안된 Spark 기반의 공간 분석 시스템에서는 검색 효율성을 위해 공간 데이터가 메모리 데이터 구조로 변환되어 공간 블록에 저장되는 차이점이 있다. 그러므로 이 논문은 인 메모리 공간 빅 데이터 프로토타입과 공간 분할 블록 저장 기법을 제시하였다, 또한, 기존의 공간 분할 알고리즘들을 제안된 프로토타입에서 성능 비교를 하여 인 메모리 환경인 Spark 기반 빅 데이터 시스템에서 적합한 공간 분할 전략을 제시하였다. 실험에서는 공간 분할 알고리즘에 대한 질의 수행 시간에 대하여 비교를 하였고, BSP 알고리즘이 가장 좋은 성능을 보여주는 것을 확인할 수 있었다.
최근 하드웨어와 소프웨어의 발전으로 데이터의 처리 용량과 처리 속도도 급속하게 증가하고 있다. 이로 인한 데이터 사용량은 기하급수적으로 증가하고 있으며, 이미 컴퓨터가 처리해야하는 자료는 초당 5천 트랜잭션을 넘었다. 이처럼 빅데이터가 중요한 이유는 실시간 때문이며, 이는 어떠한 상황에서도 모든 데이터를 분석하여 정확한 데이터를 적시에 얻을 수 있기 때문이다. 또한, 빅데이터를 활용한 스마트 공장을 만들면 개발 및 생산비용, 품질관리 비용 감소효과가 있을 것으로 예상하고 많은 연구가 수행되고 있다. 본 논문에서는 많은 데이터들이 발생하는 반도체 공정에서 고속의 빅데이터 처리를 위한 인-메모리 데이터 그리드를 이용한 시스템을 구현하였으며, 실험을 통해 향상된 성능을 입증하였다. 구현한 시스템은 반도체 뿐 만 아니라 빅데이터를 사용하는 모든 부분에서 응용 가능 할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.