• Title/Summary/Keyword: 인퓨전 성형

Search Result 3, Processing Time 0.017 seconds

A Study on the Development of Contemporary Jewelry through Resin Infusion Method -Focusing on Basalt fiber- (레진 인퓨전 성형을 통한 현대장신구 개발에 관한 연구 -바살트 섬유를 중심으로-)

  • Kwon, In-Hye;Hwang, Sun-Wook
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.597-606
    • /
    • 2022
  • This study attempted to find a new manufacturing method through Basalt fiber and resin infusion method to expand the range of expressions of Contemporary jewelry produced in studios. To this end, the concept of fiber introduction and infusion method was examined through analysis of used cases, and based on this, flat plates and color samples were produced, and then the samples were made to estimate the possibility of direct use in jewelry. As a result, the infusion method process presented certain results that could be used as a production process in the studio, and Basalt fibers were able to express various colors of spray and porselin, especially fiber its painted with porselin, which have high strength and they can be expressed intentionally, it are very valuable as jewelry's material, it is expected to be an opportunity to expand the practical production methods and expressions of Contemporary jewelry.

Parametric Study for Hole Machining in Natural Fiber Composites (천연섬유 복합재료의 홀 가공을 위한 파라메트릭 연구)

  • Lee, Dong-Woo;Oh, Jung-Suck;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.35-40
    • /
    • 2017
  • In this study, natural fiber composites including flax fiber reinforcement was manufactured. It was tried to find optimum design of drill and machining factor for minimizing the damage during hole machining in natural fiber composites. Taguchi optimization was used for minimizing the number of experiments and evaluation of the effect of machining factor during hole machining in natural fiber composites. The experimental results indicate that the newly designed drill distributes cutting resistance well and minimizes surface roughness and produces fine surfaces. Developed new drill has been dispersed in the cutting resistance during processing, it was possible to obtain the smooth hole surface. Also, it was found that optimal rotational speed and feed rate of drill for hole machining.

Study on the Crack and Thermal Degradation of GFRP for UPE Gelcoat Coated Underground Pipes Under the High Temperature Water-Immersion Environment (고온 수침 환경에서 UPE 겔코트 코팅된 지중 매설 파이프용 GFRP의 열화 및 크랙 발생 특성에 관한 연구)

  • Kim, Daehoon;Eom, Jaewon;Ko, Youngjong;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.169-177
    • /
    • 2018
  • Glass fiber reinforced polyester (GFRP) composites are widely used as structural materials in harsh environment such as underground pipes, tanks and boat hulls, which requires long-term water resistance. Especially, these materials might be damaged due to delamination between gelcoat and composites through an osmotic process when they are immersed in water. In this study, GFRP laminates were prepared by surface treatment of UPE (unsaturated polyester) gelcoat by vacuum infusion process to improve the durability of composite materials used in underground pipes. The composite surface coated with gelcoat was examined for surface defects, cracking, and hardness change characteristics in water-immersion environments (different temperatures of $60^{\circ}C$, $75^{\circ}C$, and $85^{\circ}C$). The penetration depth of cracks was investigated by micro CT imaging according to water immersion temperature. It was confirmed that cracks developed into the composites material at $75^{\circ}C$ and $85^{\circ}C$ causing loss of durability of the materials. The point at which the initial crack initiated was defined as the failure time and the life expectancy at $23^{\circ}C$ was measured using the Arrhenius equation. The results from this study is expected to be applied to reliability evaluation of various industrial fields where gelcoat is applied such as civil engineering, construction, and marine industry.